Antwoord:
de omtrek is ook verwijd met een factor van een 3
Uitleg:
verhouding van blauw tot roze
welke wanneer vereenvoudigd is
dit is de verhouding van LENGTES, dus alle lengtemetingen zitten in deze verhouding
Perimeter is ook een lengtemeting die ook in de verhouding staat
dus de omtrek is ook verwijd met een factor van een 3
De OMVANG van gelijkbenige trapezoïde ABCD is gelijk aan 80 cm. De lengte van de lijn AB is 4 keer groter dan de lengte van een CD-lijn die 2/5 is van de lengte van de lijn BC (of de lijnen die in lengte gelijk zijn). Wat is het gebied van de trapezoïde?
Het trapeziumoppervlak is 320 cm ^ 2. Laat het trapezium zijn zoals hieronder getoond: hier, als we uitgaan van kleinere zijde, is CD = een en grotere zijde AB = 4a en BC = a / (2/5) = (5a) / 2. Als zodanig is BC = AD = (5a) / 2, CD = a en AB = 4a Vandaar is de omtrek (5a) / 2xx2 + a + 4a = 10a Maar de omtrek is 80 cm .. Vandaar a = 8 cm. en twee paillekanten weergegeven als a en b zijn 8 cm. en 32 cm. Nu trekken we loodlijnen voor C en D naar AB, die twee identieke rechthoekige driehoeken vormen, waarvan de schuine zijde 5 / 2xx8 = 20 cm is. en base is (4xx8-8) / 2 = 12 en vandaar dat de hoogte sqrt (20 ^ 2-12 ^ 2) = sqrt
Er zijn 5 roze ballonnen en 5 blauwe ballonnen. Als er willekeurig twee ballonnen worden geselecteerd, wat is dan de kans om een roze ballon en dan een blauwe ballon te krijgen? A Er zijn 5 roze ballonnen en 5 blauwe ballonnen. Als twee ballonnen willekeurig worden geselecteerd
1/4 Aangezien er in totaal 10 ballonnen zijn, 5 roze en 5 blauw, is de kans op een roze ballon 5/10 = (1/2) en de kans op een blauwe ballon 5/10 = (1 / 2) Dus om de kans te zien om een roze ballon te plukken, vermenigvuldigt een blauwe ballon de kansen om beide te kiezen: (1/2) * (1/2) = (1/4)
Twee parallelle koorden van een cirkel met lengten van 8 en 10 dienen als basis van een trapezium ingeschreven in de cirkel. Als de lengte van een straal van de cirkel 12 is, wat is dan het grootst mogelijke oppervlak van een dergelijke beschreven ingeschreven trapezium?
72 * sqrt (2) + 9 * sqrt (119) ~ = 200.002 Overweeg Fign. 1 en 2 Schematisch kunnen we een parallellogram ABCD in een cirkel plaatsen, en op voorwaarde dat zijden AB en CD akkoorden zijn van de cirkels, op de manier van figuur 1 of figuur 2. De voorwaarde dat de zijden AB en CD moeten zijn akkoorden van de cirkel impliceert dat de ingeschreven trapezoïde een gelijkbenige moet zijn omdat de diagonalen van de trapezoïde (AC en CD) gelijk zijn omdat A hat BD = B hat AC = B hatD C = A hat CD en de lijn loodrecht op AB en CD passerend door het midden E doorsnijdt deze akkoorden (dit betekent dat AF = BF en CG = DG en