Antwoord:
Zie de uitleg hieronder.
Uitleg:
a) Het domein van f:
Het bereik van f:
b) Als f: ℝ ℝ, dan is f een op één functie als f (a) = f (b) en
a = b, aan de andere kant wanneer f (a) = f (b) maar a b, dan is de functie f niet één op één, dus in dit geval:
f (-1) = f (1) = 1/2, maar -1 1, vandaar dat de functie f niet één op één is op zijn domein.
De functie f is zodanig dat f (x) = a ^ 2x ^ 2-ax + 3b voor x <1 / (2a) Waar a en b constant zijn voor het geval dat a = 1 en b = -1 Find f ^ - 1 (cf en vind zijn domein Ik ken het domein van f ^ -1 (x) = bereik van f (x) en het is -13/4 maar ik weet geen ongelijkheid tekenrichting?
Zie hieronder. a ^ 2x ^ 2-ax + 3b x ^ 2-x-3 Range: in vorm zetten y = a (xh) ^ 2 + kh = -b / (2a) k = f (h) h = 1/2 f (h) = f (1/2) = (1/2) ^ 2- (1/2) -3 = -13 / 4 Minimale waarde -13/4 Dit gebeurt met x = 1/2 Het bereik is (- 13/4, oo) f ^ (- 1) (x) x = y ^ 2-y-3 y ^ 2-y- (3-x) = 0 Met behulp van de kwadratische formule: y = (- (- 1) + -sqrt ((- 1) ^ 2-4 (1) (- 3-x))) / 2 y = (1 + -sqrt (4x + 13)) / 2 f ^ (- 1) (x) = ( 1 + sqrt (4x + 13)) / 2 f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 Met een kleine gedachte kunnen we zien dat voor het domein dat we hebben de vereiste inverse is : f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 Met do
Wat is het domein en bereik van 3x-2 / 5x + 1 en het domein en bereik van de inverse van de functie?
Domein is alle realen behalve -1/5, wat het bereik van de inverse is. Bereik is alle realen behalve 3/5, wat het domein van de inverse is. f (x) = (3x-2) / (5x + 1) is gedefinieerd en reële waarden voor alle x behalve -1/5, dus dat is het domein van f en het bereik van f ^ -1 Instelling y = (3x -2) / (5x + 1) en oplossen voor x opbrengsten 5xy + y = 3x-2, dus 5xy-3x = -y-2, en daarom (5y-3) x = -y-2, dus uiteindelijk x = (- y2) / (5y-3). We zien dat y! = 3/5. Dus het bereik van f is alle realen behalve 3/5. Dit is ook het domein van f ^ -1.
Als de functie f (x) een domein heeft van -2 <= x <= 8 en een bereik van -4 <= y <= 6 en de functie g (x) wordt gedefinieerd door de formule g (x) = 5f ( 2x)), wat is dan het domein en het bereik van g?
Hieronder. Gebruik basisfunctietransformaties om het nieuwe domein en bereik te vinden. 5f (x) betekent dat de functie verticaal wordt uitgerekt met een factor vijf. Daarom zal het nieuwe bereik een interval overspannen dat vijf keer groter is dan het origineel. In het geval van f (2x) wordt een horizontale rek met een factor van een halve toegepast op de functie. Daarom zijn de uiteinden van het domein gehalveerd. En voila!