Antwoord:
Zie bewijs hieronder
Uitleg:
Laten we beginnen met het berekenen
We beginnen met de
Vermenigvuldigen en herschikken
Oplossen voor
Evenzo met de
De kans dat je te laat bent op school is 0,05 voor elke dag. Gezien het feit dat je te laat sliep, is de kans dat je te laat bent op school 0.13. Zijn de gebeurtenissen 'Laat naar school' en 'Sliep laat' onafhankelijk of afhankelijk?
Ze zijn afhankelijk. De gebeurtenis "Sliep laat" heeft invloed op de waarschijnlijkheid van de andere gebeurtenis "te laat op school". Een voorbeeld van onafhankelijke gebeurtenissen is het herhaaldelijk omdraaien van een munt. Omdat de munt geen geheugen heeft, zijn de kansen op de tweede (of latere) worpen nog steeds 50/50 - op voorwaarde dat het een eerlijke munt is! Extra: misschien wilt u deze overdenken: u ontmoet een vriend, met wie u al jaren niet meer spreekt. Alles wat je weet is dat hij twee kinderen heeft. Als je hem ontmoet, heeft hij zijn zoon bij zich. Hoe groot is de kans dat het andere
De grafiek van h (x) wordt getoond. De grafiek lijkt continu te zijn, waarbij de definitie verandert. Laten zien dat h in feite continu is door de linker en rechter limieten te vinden en te laten zien dat aan de definitie van continuïteit is voldaan?
Zie de toelichting alstublieft. Om aan te tonen dat h continu is, moeten we de continuïteit controleren op x = 3. Dat weten we, hij zal cont worden. bij x = 3, als en alleen als, lim_ (x tot 3-) h (x) = h (3) = lim_ (x tot 3+) h (x) ............ ................... (ast). Als x tot 3-, x lt 3:. h (x) = - x ^ 2 + 4x + 1. :. lim_ (x tot 3-) h (x) = lim_ (x tot 3 -) - x ^ 2 + 4x + 1 = - (3) ^ 2 + 4 (3) +1, rArr lim_ (x tot 3-) h (x) = 4 ............................................ .......... (ast ^ 1). Evenzo, lim_ (x tot 3+) h (x) = lim_ (x tot 3+) 4 (0.6) ^ (x-3) = 4 (0.6) ^ 0. rArr lim_ (x to 3+) h (x) = 4 ...........
Laat P een willekeurig punt op de kegelsnede zijn r = 12 / (3-sin x). Laat F¹ en F² respectievelijk de punten (0, 0 °) en (3, 90 °) zijn. Laat zien dat PF¹ en PF² = 9?
R = 12 / {3-sin theta} We worden gevraagd om | PF_1 | te tonen + | PF_2 | = 9, d.w.z. P veegt een ellips uit met foci F_1 en F_2. Zie het onderstaande bewijs. # Laten we oplossen wat ik ga raden is een typfout en zeg P (r, theta) voldoet aan r = 12 / {3-sin theta} Het bereik van sinus is pm 1 dus we besluiten 4 le r le 6. 3r - r sin theta = 12 | PF_1 | = | P - 0 | = r In rechthoekige coördinaten, P = (r cos theta, r sin theta) en F_2 = (3 cos 90 ^ circ, 3 sin 90 ^ circ) = (0,3) | PF_2 | ^ 2 = | P-F_2 | ^ 2 = r ^ 2 cos ^ 2 theta + (r sin theta - 3) ^ 3 | PF_2 | ^ 2 = r ^ 2 cos ^ 2 theta + r ^ 2 sin ^ 2 theta - 6 r sin