Wat is (4x ^ 2-1) / (2x ^ 2-5x-3) * (x ^ 2-6x + 9) / (2x ^ 2 + 5x-3), vereenvoudigd?

Wat is (4x ^ 2-1) / (2x ^ 2-5x-3) * (x ^ 2-6x + 9) / (2x ^ 2 + 5x-3), vereenvoudigd?
Anonim

Antwoord:

# (X-3) / (x + 3) #

Uitleg:

Eerst zou je alle polynomen beschouwen en krijgen:

# 4x ^ 2-1 = (2x-1) (2x + 1) #

# X ^ 2-6x + 9 = (x-3) ^ 2 #

Laten we de nullen van vinden

1) # 2x ^ 2-5x-3 # en 2) # 2x ^ 2 + 5x-3 # door de kwadratische formule:

# X = (5 + -sqrt (25 + 24)) / 4 = (5 + -7) / 4 #

# X_1 = -1/2; x_2 = 3 #

Dan

1) # 2x ^ 2-5x-3 = 2 (x + 1/2) (x-3) = (2x + 1) (x-3) #

#X = (- 5 + -sqrt (25 + 24)) / 4 = (- 5 + -7) / 4 #

# X_1 = -3; x_2 = 1/2 #

Dan

2) # ^ 2 + 2x 5x-3 = 2 (x + 3) (x-1/2) = (x + 3) (2 x-1) #

Dan is de gegeven uitdrukking:

# (Annuleren ((2x-1)) te annuleren ((2x + 1))) / (annuleren ((2x + 1)) te annuleren ((x-3))) * ((x-3) ^ cancel2) / ((x + 3) te annuleren ((2x-1))) #

# = (X-3) / (x + 3) #