Wat is het domein en bereik van y = x ^ 2-2?

Wat is het domein en bereik van y = x ^ 2-2?
Anonim

Antwoord:

#x inRR, y in -2, oo) #

Uitleg:

# "y is gedefinieerd voor alle werkelijke waarden van x" #

# "domein is" x inRR #

# (- oo, oo) larrcolor (blauw) "in intervalnotatie" #

# "het kwadratische in de vorm" y = x ^ 2 + c #

# "heeft een minimum keerpunt op" (0, c) #

# y = x ^ 2-2 "is in deze vorm met" c = -2 #

# "bereik is" y in -2, oo) #

grafiek {x ^ 2-2 -10, 10, -5, 5}

Antwoord:

Aangezien er geen breuken, wortels, enz. Betrokken zijn domein van #X# is niet beperkt. # - oo <x <+ oo #

Uitleg:

De reeks van # Y #:

# X ^ 2 # is altijd niet-negatief:

# x ^ 2> = 0-> x ^ 2-2> = -2 #

Zo: # -2 <y <+ oo #