Antwoord:
Max A =
Min A =
Uitleg:
Uit de formule voor het driehoeksgebied
We kunnen ook trigonometrie gebruiken om de ingesloten hoek tegenover de kleinste kant te vinden:
We hebben nu een 'SAS'-driehoek. We gebruiken de wet van Cosinus om de kleinste kant te vinden:
De grootste vergelijkbare driehoek heeft de gegeven lengte van 25 als de kortste zijde en het minimale gebied zou de langste zijde hebben, overeenkomend met de 12 van het origineel.
Zo zou het minimumgebied van een vergelijkbare driehoek zijn
We kunnen Heron's Formula gebruiken om het gebied met drie kanten op te lossen. Verhoudingen: 3,37: 9: 12 = 12: 32: 42,7
Driehoek A heeft een oppervlakte van 12 en twee zijden van lengte 5 en 7. Driehoek B is vergelijkbaar met driehoek A en heeft een zijde met een lengte van 19. Wat zijn de maximale en minimaal mogelijke gebieden van driehoek B?
Maximum oppervlakte = 187.947 "" vierkante eenheden Minimale oppervlakte = 88.4082 "" vierkante eenheden De driehoeken A en B zijn vergelijkbaar. Op verhouding en verhoudingsmethode van oplossing heeft driehoek B drie mogelijke driehoeken. Voor driehoek A: de zijkanten zijn x = 7, y = 5, z = 4.800941906394, hoek Z = 43.29180759327 ^ @ De hoek Z tussen zijden x en y is verkregen met behulp van de formule voor driehoeksgebied Area = 1/2 * x * y * sin Z 12 = 1/2 * 7 * 5 * sin ZZ = 43.29180759327 ^ @ Drie mogelijke driehoeken voor driehoek B: de zijden zijn driehoek 1. x_1 = 19, y_1 = 95/7, z_1 = 13.0311280
Driehoek A heeft een oppervlakte van 12 en twee zijden van lengte 6 en 9. Driehoek B is vergelijkbaar met driehoek A en heeft een zijde met een lengte van 15. Wat zijn de maximale en minimaal mogelijke gebieden van driehoek B?
Delta's A en B zijn vergelijkbaar. Om het maximale oppervlak van Delta B te krijgen, moet kant 15 van Delta B overeenkomen met kant 6 van Delta A. Zijden hebben de verhouding 15: 6. Daarom zijn de gebieden in de verhouding 15 ^ 2: 6 ^ 2 = 225: 36 Maximumoppervlak van driehoek B = (12 * 225) / 36 = 75 Op dezelfde manier als om het minimale oppervlak te krijgen, komt zijde 9 van Delta A overeen met zijde 15 van Delta B. Zijkanten in verhouding 15: 9 en gebieden 225: 81 Minimaal gebied van Delta B = (12 * 225) / 81 = 33.3333
Driehoek A heeft een oppervlakte van 12 en twee zijden van lengte 7 en 7. Driehoek B is vergelijkbaar met driehoek A en heeft een zijde met een lengte van 19. Wat zijn de maximale en minimaal mogelijke gebieden van driehoek B?
Gebied van driehoek B = 88.4082 Aangezien driehoek A gelijkbenig is, is driehoek B ook gelijkbenig.De zijden van de driehoeken B & A zijn in de verhouding 19: 7. De gebieden hebben de verhouding 19 ^ 2: 7 ^ 2 = 361: 49:. Gebied van driehoek B = (12 * 361) / 49 = 88.4082