Antwoord:
Drie.
Uitleg:
Slechts drie veelvouden van
Om dit te bepalen, kunnen we een lijst maken van de veelvouden van
Alle nummers in deze lijst kunnen worden gedeeld door
Het getal van een afgelopen jaar is gedeeld door 2 en het resultaat is ondersteboven gekeerd en gedeeld door 3, dan is het met de rechterkant naar boven gelaten en gedeeld door 2. Vervolgens zijn de cijfers in het resultaat omgekeerd om 13 te maken. Wat is het afgelopen jaar?
Color (red) (1962) Hier zijn de beschreven stappen: {: ("jaar", kleur (wit) ("xxx"), rarr ["result" 0]), (["result" 0] div 2 ,, rarr ["result" 1]), (["result" 1] "ondersteboven gekeerd" ,, rarr ["result" 2]), (["result" 2] "gedeeld door" 3,, rarr ["result "3]), ((" links naar rechts boven ") ,, (" geen verandering ")), ([" resultaat "3] div 2,, rarr [" result "4]), ([" result " 4] "digits reversed" ,, rarr ["result" 5] = 13):} Working backward: c
De rest van een polynoom f (x) in x is respectievelijk 10 en 15 wanneer f (x) wordt gedeeld door (x-3) en (x-4) .Zoek de rest wanneer f (x) wordt gedeeld door (x- 3) (- 4)?
5x-5 = 5 (x-1). Bedenk dat de mate van de rest poly is. is altijd minder dan dat van de deler poly. Daarom, wanneer f (x) wordt gedeeld door een kwadratische poly. (x-4) (x-3), de rest poly. moet lineair zijn, zeg, (ax + b). Als q (x) het quotiënt poly is. in de bovenstaande verdeling hebben we dan, f (x) = (x-4) (x-3) q (x) + (ax + b) ............ <1> . f (x), wanneer gedeeld door (x-3) laat de rest 10, rArr f (3) = 10 .................... [omdat, "de Restantstelling] ". Vervolgens met <1>, 10 = 3a + b .................................... <2 >. Evenzo, f (4) = 15, en <rArr 4a + b = 15 .
Wanneer een polynoom wordt gedeeld door (x + 2), is de rest -19. Wanneer hetzelfde polynoom wordt gedeeld door (x-1), is de rest 2, hoe bepaal je de rest wanneer het polynoom wordt gedeeld door (x + 2) (x-1)?
We weten dat f (1) = 2 en f (-2) = - 19 van de Restantstelling. Vind nu de rest van polynoom f (x) wanneer gedeeld door (x-1) (x + 2). De rest zal zijn van de vorm Ax + B, omdat het de rest is na deling door een kwadratische vorm. We kunnen nu de deler vermenigvuldigen maal het quotiënt Q ... f (x) = Q (x-1) (x + 2) + Ax + B Volgende, voeg 1 in en -2 voor x ... f (1) = Q (1-1) (1 + 2) + A (1) + B = A + B = 2 f (-2) = Q (-2-1) (- 2 + 2) + A (-2) + B = -2A + B = -19 Oplossen van deze twee vergelijkingen, we krijgen A = 7 en B = -5 Rest = Ax + B = 7x-5