Antwoord:
Uitleg:
Gebruik het kwadraat van de afstandsformule:
Stel dit gelijk aan nul en los op voor x:
Ik heb WolframAlpha gebruikt om deze quartische vergelijking op te lossen.
De x-coördinaten van de punten die een loodrecht op de curve vormen met het punt
De twee punten één de curve zijn:
De helling van het eerste punt is:
De helling van het tweede punt is:
Het gegeven punt gebruiken voor het punthellingsformulier:
Hier is de grafiek van de curve en de 2 loodlijnen om het te bewijzen:
De vergelijking van een lijn is 2x + 3y - 7 = 0, vind: - (1) helling van lijn (2) de vergelijking van een lijn loodrecht op de gegeven lijn en passeert de kruising van de lijn x-y + 2 = 0 en 3x + y-10 = 0?
-3x + 2y-2 = 0 kleur (wit) ("ddd") -> kleur (wit) ("ddd") y = 3 / 2x + 1 Eerste deel in veel detail dat aantoont hoe de eerste beginselen werken. Eenmaal hieraan gebruikt en met behulp van snelkoppelingen, gebruikt u veel minder regels. kleur (blauw) ("Bepaal het snijpunt van de beginvergelijkingen") x-y + 2 = 0 "" ....... Vergelijking (1) 3x + y-10 = 0 "" .... Vergelijking ( 2) Trek x af van beide zijden van Eqn (1) en geef -y + 2 = -x Vermenigvuldig beide zijden met (-1) + y-2 = + x "" .......... Vergelijking (1_a ) Gebruik Eqn (1_a) substituut voor x in Eqn
Lijn L heeft vergelijking 2x-3y = 5 en lijn M gaat door het punt (2, 10) en staat loodrecht op lijn L. Hoe bepaal je de vergelijking voor lijn M?
In hellingspuntvorm is de vergelijking van lijn M y-10 = -3 / 2 (x-2). In hellingsinterceptievorm is dit y = -3 / 2x + 13. Om de helling van lijn M te vinden, moeten we eerst de helling van lijn L afleiden. De vergelijking voor lijn L is 2x-3y = 5. Dit is in standaardvorm, die ons niet direct de helling van L vertelt. We kunnen deze vergelijking echter hiërarchisch hiërarchisch rangschikken door y op te lossen: 2x-3y = 5 kleur (wit) (2x) -3y = 5-2x "" (2x aftrekken van beide kanten) kleur (wit) (2x-3) y = (5-2x) / (- 3) "" (deel beide zijden in door -3) kleur (wit) (2x- 3) y = 2/3 x-5/3 "
Lijn n loopt door punten (6,5) en (0, 1). Wat is het y-snijpunt van lijn k, als lijn k loodrecht staat op lijn n en door het punt (2,4) gaat?
7 is het y-snijpunt van lijn k Eerste, laten we de helling zoeken voor lijn n. (1-5) / (0-6) (-4) / - 6 2/3 = m De helling van lijn n is 2/3. Dat betekent dat de helling van lijn k, die loodrecht staat op lijn n, de negatieve reciprook is van 2/3, of -3/2. Dus de vergelijking die we tot nu toe hebben is: y = (- 3/2) x + b Om b of het y-snijpunt te berekenen, plug je gewoon (2,4) in de vergelijking. 4 = (- 3/2) (2) + b 4 = -3 + b 7 = b Het y-snijpunt is dus 7