Het domein van f (x) is de verzameling van alle reële waarden behalve 7 en het domein van g (x) is de verzameling van alle reële waarden behalve van -3. Wat is het domein van (g * f) (x)?
Alle reële getallen behalve 7 en -3 wanneer je twee functies vermenigvuldigt, wat doen we? we nemen de f (x) -waarde en vermenigvuldigen deze met de g (x) -waarde, waarbij x hetzelfde moet zijn. Beide functies hebben echter beperkingen, 7 en -3, dus het product van de twee functies moet * beide * beperkingen hebben. Meestal als bewerkingen op functies hebben, als de vorige functies (f (x) en g (x)) beperkingen hadden, worden ze altijd genomen als onderdeel van de nieuwe beperking van de nieuwe functie of hun werking. Je kunt dit ook visualiseren door twee rationale functies te maken met verschillende beperkte waarden,
De functie f is zodanig dat f (x) = a ^ 2x ^ 2-ax + 3b voor x <1 / (2a) Waar a en b constant zijn voor het geval dat a = 1 en b = -1 Find f ^ - 1 (cf en vind zijn domein Ik ken het domein van f ^ -1 (x) = bereik van f (x) en het is -13/4 maar ik weet geen ongelijkheid tekenrichting?
Zie hieronder. a ^ 2x ^ 2-ax + 3b x ^ 2-x-3 Range: in vorm zetten y = a (xh) ^ 2 + kh = -b / (2a) k = f (h) h = 1/2 f (h) = f (1/2) = (1/2) ^ 2- (1/2) -3 = -13 / 4 Minimale waarde -13/4 Dit gebeurt met x = 1/2 Het bereik is (- 13/4, oo) f ^ (- 1) (x) x = y ^ 2-y-3 y ^ 2-y- (3-x) = 0 Met behulp van de kwadratische formule: y = (- (- 1) + -sqrt ((- 1) ^ 2-4 (1) (- 3-x))) / 2 y = (1 + -sqrt (4x + 13)) / 2 f ^ (- 1) (x) = ( 1 + sqrt (4x + 13)) / 2 f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 Met een kleine gedachte kunnen we zien dat voor het domein dat we hebben de vereiste inverse is : f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 Met do
Wat is het domein van de gecombineerde functie h (x) = f (x) - g (x), als het domein van f (x) = (4,4.5] en het domein van g (x) is [4, 4.5 )?
Het domein is D_ {f-g} = (4,4.5). Zie uitleg. (f-g) (x) kan alleen worden berekend voor die x, waarvoor zowel f als g zijn gedefinieerd. Dus we kunnen dat schrijven: D_ {f-g} = D_fnnD_g Hier hebben we D_ {f-g} = (4,4.5] nn [4,4.5) = (4,4.5)