Antwoord:
De standaardvorm voor de vergelijking van een cirkel met middelpunt
Uitleg:
Ik denk niet dat er veel meer moet worden uitgelegd dan in het bovenstaande antwoord.
De gemeenschappelijke trucs zijn om de mintekens te noteren in de standaardvorm en om te onthouden dat de uitdrukking in de standaardvorm voor is
Je krijgt een cirkel B met een middelpunt (4, 3) en een punt op (10, 3) en een andere cirkel C waarvan het middelpunt (-3, -5) is en een punt op die cirkel is (1, -5) . Wat is de verhouding van cirkel B tot cirkel C?
3: 2 "of" 3/2 "we moeten de stralen van de cirkels berekenen en vergelijken" "de straal is de afstand van het centrum tot het punt" "op de cirkel" "centrum van B" = (4,3 ) "en punt is" = (10,3) "omdat de y-coördinaten beide 3 zijn, dan is de straal" "het verschil in de x-coördinaten" rArr "straal van B" = 10-4 = 6 "midden van C "= (- 3, -5)" en punt is "= (1, -5)" y-coördinaten zijn beide - 5 "rArr" radius van C "= 1 - (- 3) = 4" ratio " = (kleur (rood) "radius_B&qu
Cirkel A heeft een straal van 2 en een middelpunt van (6, 5). Cirkel B heeft een straal van 3 en een middelpunt van (2, 4). Als cirkel B wordt vertaald door <1, 1>, overlapt cirkel A dan? Zo nee, wat is de minimale afstand tussen punten op beide cirkels?
"cirkels overlappen"> "wat we hier moeten doen is de afstand (d)" "vergelijken tussen de middelpunten en de som van de radii" • "als de som van radii"> d "dan cirkels elkaar overlappen" • "als som van radii "<d" en dan geen overlapping "" voor het berekenen van d dat we nodig hebben om het nieuwe centrum "" van B te vinden na de gegeven vertaling "" onder de vertaling "<1,1> (2,4) tot (2 + 1, 4 + 1) tot (3,5) larrcolor (rood) "nieuw centrum van B" "om te berekenen d gebruik de" color (blue)
Cirkel A heeft een middelpunt op (5, -2) en een straal van 2. Cirkel B heeft een middelpunt op (2, -1) en een straal van 3. Overlopen de cirkels elkaar? Zo nee, wat is de kleinste afstand ertussen?
Ja, de cirkels overlappen elkaar. Bereken de afstand tussen midden en midden Laat P_2 (x_2, y_2) = (5, -2) en P_1 (x_1, y_1) = (2, -1) d = sqrt ((x_2-x_1) ^ 2 + (y_2-y_1 ) ^ 2) d = sqrt ((5-2) ^ 2 + (- 2--1) ^ 2) d = sqrt ((3 ^ 2 + (- 1) ^ 2) d = sqrt10 = 3.16 Bereken de som van de radii r_t = r_1 + r_2 = 3 + 2 = 5 r_1 + r_2> d de cirkels overlappen God zegene .... Ik hoop dat de uitleg nuttig is.