Antwoord:
Uitleg:
We beginnen met het toewijzen van variabelen:
Als het
'Hun som is
Nu vervangen we
Vinden
De eerste en tweede termen van een geometrische reeks zijn respectievelijk de eerste en derde termen van een lineaire reeks. De vierde term van de lineaire reeks is 10 en de som van de eerste vijf term is 60 Vind de eerste vijf termen van de lineaire reeks?
{16, 14, 12, 10, 8} Een typische geometrische reeks kan worden weergegeven als c_0a, c_0a ^ 2, cdots, c_0a ^ k en een typische rekenkundige rij als c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Calling c_0 a als het eerste element voor de geometrische reeks die we hebben {(c_0 a ^ 2 = c_0a + 2Delta -> "Eerste en tweede van GS zijn de eerste en derde van een LS"), (c_0a + 3Delta = 10- > "De vierde term van de lineaire reeks is 10"), (5c_0a + 10Delta = 60 -> "De som van de eerste vijf term is 60"):} Oplossen voor c_0, a, Delta we verkrijgen c_0 = 64/3 , a = 3/4, Delta = -2 en
De som van de cijfers van een driecijferig nummer is 15. Het cijfer van het apparaat is minder dan de som van de andere cijfers. De tientallen cijfers zijn het gemiddelde van de andere cijfers. Hoe vind je het nummer?
A = 3 ";" b = 5 ";" c = 7 Gegeven: a + b + c = 15 ................... (1) c <b + a ............................... (2) b = (a + c) / 2 ...... ........................ (3) '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ Overwegen vergelijking (3) -> 2b = (a + c) Schrijf vergelijking (1) als (a + c) + b = 15 Door te substitueren wordt dit 2b + b = 15 kleuren (blauw) (=> b = 5) '~~~~~~~~~~~~~~ Nu hebben we: a + 5 + c = 15. .................. (1_a) c <5 + a ........................ ...... (2_a) 5 = (a + c) / 2 .............................. (3_a ) '~~~~~~~~~~~~~~~~
Eén nummer is 4 minder dan 3 keer een tweede nummer. Als 3 meer dan twee keer het eerste getal met 2 keer het tweede getal wordt verkleind, is het resultaat 11. Gebruik de substitutiemethode. Wat is het eerste nummer?
N_1 = 8 n_2 = 4 Eén getal is 4 minder dan -> n_1 =? - 4 3 keer "........................." -> n_1 = 3? -4 de tweede aantal kleuren (bruin) (".........." -> n_1 = 3n_2-4) kleur (wit) (2/2) Als er nog 3 "... ........................................ "->? +3 dan twee keer de eerste nummer "............" -> 2n_1 + 3 is verlaagd met "......................... .......... "-> 2n_1 + 3? 2 maal het tweede cijfer "................." -> 2n_1 + 3-2n_2 het resultaat is 11kleur (bruin) (".......... ........................... "-> 2n_1 + 3-2