Antwoord:
Zie hieronder.
Uitleg:
Dit is je driehoek. Zoals je kunt zien is het een dubbelzinnige zaak.
Dus om de hoek te vinden
Omdat het de dubbelzinnige zaak is:
Hoeken op een rechte lijn toevoegen aan
U kunt aan de hand van het diagram zien dat, zoals u opmerkte:
Hier is een link die je kan helpen. Dit kan even duren om te begrijpen, maar je lijkt op de goede weg te zijn.
www.softschools.com/math/calculus/the_ambiguous_case_of_the_law_of_sines/
Driehoek A heeft zijden van lengtes 1 3, 1 4 en 11. Driehoek B is vergelijkbaar met driehoek A en heeft een zijde van lengte 4. Wat zijn de mogelijke lengtes van de andere twee zijden van driehoek B?
Gegeven driehoek A: 13, 14, 11 Driehoek B: 4,56 / 13,44 / 13 Driehoek B: 26/7, 4, 22/7 Driehoek B: 52/11, 56/11, 4 Laat driehoek B zijden hebben x, y, z gebruik dan verhouding en verhouding om de andere kanten te vinden. Als de eerste zijde van driehoek B x = 4 is, zoek dan y, z op te lossen voor y: y / 14 = 4/13 y = 14 * 4/13 y = 56/13 `` `` `` `` `` ` `` `` `` `` `` `` `` `` `` `` `` `` `` `solve voor z: z / 11 = 4/13 z = 11 * 4/13 z = 44 / 13 Driehoek B: 4, 56/13, 44/13 de rest is hetzelfde voor de andere driehoek B als de tweede zijde van driehoek B y = 4 is, zoek x en z op voor x: x / 13 = 4/14 x = 13 * 4/14 x = 26/7
Twee gelijkbenige driehoeken hebben dezelfde basislengte. De poten van een van de driehoeken zijn twee keer zo lang als de benen van de ander. Hoe vind je de lengtes van de zijden van de driehoeken als hun omtrek 23 cm en 41 cm zijn?
Elke stap wordt zo lang getoond. Spring over de stukjes die je kent. Basis is 5 voor beide De kleinere poten zijn elk 9 De langere poten zijn 18 elk Soms helpt een snelle schets bij het vinden van wat te doen Voor driehoek 1 -> a + 2b = 23 "" ........... .... Vergelijking (1) Voor driehoek 2 -> a + 4b = 41 "" ............... Vergelijking (2) ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ : a = 23-2b "" ......................... Vergelijking (1_a) Trek voor vergelijking (2) 4b van beide zijden af en geef daarb
Een driehoek is zowel gelijkbenig als acuut. Als een hoek van de driehoek 36 graden meet, wat is dan de maat van de grootste hoek (en) van de driehoek? Wat is de maat van de kleinste hoek (en) van de driehoek?
Het antwoord op deze vraag is eenvoudig, maar vereist enige wiskundige algemene kennis en gezond verstand. Gelijkbenige driehoek: - Een driehoek waarvan de enige twee zijden gelijk zijn, wordt een gelijkbenige driehoek genoemd. Een gelijkbenige driehoek heeft ook twee gelijke engelen. Acute driehoek: - Een driehoek waarvan alle engelen groter zijn dan 0 ^ @ en kleiner dan 90 ^ @, dat wil zeggen dat alle engelen acuut zijn, wordt een acute driehoek genoemd. Gegeven driehoek heeft een hoek van 36 ^ @ en is zowel gelijkbenig als acuut. impliceert dat deze driehoek twee gelijke engelen heeft. Nu zijn er twee mogelijkheden voor