Eén nummer is 4 minder dan 3 keer een tweede nummer. Als 3 meer dan twee keer het eerste getal met 2 keer het tweede getal wordt verkleind, is het resultaat 11. Gebruik de substitutiemethode. Wat is het eerste nummer?
N_1 = 8 n_2 = 4 Eén getal is 4 minder dan -> n_1 =? - 4 3 keer "........................." -> n_1 = 3? -4 de tweede aantal kleuren (bruin) (".........." -> n_1 = 3n_2-4) kleur (wit) (2/2) Als er nog 3 "... ........................................ "->? +3 dan twee keer de eerste nummer "............" -> 2n_1 + 3 is verlaagd met "......................... .......... "-> 2n_1 + 3? 2 maal het tweede cijfer "................." -> 2n_1 + 3-2n_2 het resultaat is 11kleur (bruin) (".......... ........................... "-> 2n_1 + 3-2
Eén nummer is vier keer een ander nummer. Als het kleinere aantal wordt afgetrokken van het grotere aantal, is het resultaat hetzelfde als wanneer het kleinere aantal met 30 is verhoogd. Wat zijn de twee getallen?
A = 60 b = 15 Groter getal = a Kleiner aantal = ba = 4b ab = b + 30 abb = 30 a-2b = 30 4b-2b = 30 2b = 30 b = 30/2 b = 15 a = 4xx15 a = 60
Wanneer u mijn waarde neemt en deze met -8 vermenigvuldigt, is het resultaat een geheel getal groter dan -220. Als u het resultaat neemt en het deelt door de som van -10 en 2, is het resultaat mijn waarde. Ik ben een rationeel nummer. Wat is mijn nummer?
Je waarde is een rationeel getal groter dan 27,5 of 55/2. We kunnen deze twee vereisten modelleren met een ongelijkheid en een vergelijking. Laat x onze waarde zijn. -8x> -220 (-8x) / (-10 + 2) = x We zullen eerst proberen de waarde van x te vinden in de tweede vergelijking. (-8x) / (-10 + 2) = x (-8x) / - 8 = x x = x Dit betekent dat ongeacht de initiële waarde van x, de tweede vergelijking altijd waar zal zijn. Nu om de ongelijkheid uit te werken: -8x> -220 x <27.5 Dus, de waarde van x is elk rationeel getal groter dan 27,5 of 55/2.