Antwoord:
Zie hieronder.
Uitleg:
De basisregel die u moet begrijpen, is dat wanneer u twee matrices vermenigvuldigt
De regel stelt dat, als
U kunt vectoren ook beschouwen als speciale matrices, met slechts één rij (of kolom).
Laten we zeggen dat in jouw geval
En daarom
Op dezelfde manier,
Dus beide vectoren van dezelfde vorm
Postscriptum Merk op dat dit nodig is voor
De eerste en tweede termen van een geometrische reeks zijn respectievelijk de eerste en derde termen van een lineaire reeks. De vierde term van de lineaire reeks is 10 en de som van de eerste vijf term is 60 Vind de eerste vijf termen van de lineaire reeks?
{16, 14, 12, 10, 8} Een typische geometrische reeks kan worden weergegeven als c_0a, c_0a ^ 2, cdots, c_0a ^ k en een typische rekenkundige rij als c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Calling c_0 a als het eerste element voor de geometrische reeks die we hebben {(c_0 a ^ 2 = c_0a + 2Delta -> "Eerste en tweede van GS zijn de eerste en derde van een LS"), (c_0a + 3Delta = 10- > "De vierde term van de lineaire reeks is 10"), (5c_0a + 10Delta = 60 -> "De som van de eerste vijf term is 60"):} Oplossen voor c_0, a, Delta we verkrijgen c_0 = 64/3 , a = 3/4, Delta = -2 en
Vector A = 125 m / s, 40 graden ten noorden van het westen. Vector B is 185 m / s, 30 graden ten zuiden van het westen en vector C is 175 m / s 50 ten oosten van het zuiden. Hoe vind je A + B-C volgens de vectorresolutiemethode?
De resulterende vector zal 402,7 m / s zijn bij een standaardhoek van 165,6 °. Allereerst lost u elke vector (hier gegeven in standaardvorm) op in rechthoekige componenten (x en y). Vervolgens voeg je de x-componenten bij elkaar en voeg je de y-componenten bij elkaar. Dit geeft je het antwoord dat je zoekt, maar in een rechthoekige vorm. Converteer tenslotte het resultaat in standaardformulier. Dit is hoe: Oplossen in rechthoekige componenten A_x = 125 cos 140 ° = 125 (-0.766) = -95.76 m / s A_y = 125 sin 140 ° = 125 (0.643) = 80.35 m / s B_x = 185 cos (-150 °) = 185 (-0.866) = -160.21 m / s B_y = 185 s
Laat de hoek tussen twee niet-nulvectoren A (vector) en B (vector) 120 (graden) zijn en het resultaat daarvan is C (vector). Welke van de volgende is (zijn) dan correct?
Optie (b) bb A * bb B = abs bbA abs bbB cos (120 ^ o) = -1/2 abs bbA abs bbB bbC = bbA + bbB C ^ 2 = (bbA + bbB) * (bbA + bbB) = A ^ 2 + B ^ 2 + 2 bbA * bb B = A ^ 2 + B ^ 2 - abs bbA abs bbB qquad square abs (bbA - bbB) ^ 2 = (bbA - bbB) * (bbA - bbB) = A ^ 2 + B ^ 2 - 2bbA * bbB = A ^ 2 + B ^ 2 + abs bbA abs bbB qquad triangle abs (bbA - bbB) ^ 2 - C ^ 2 = driehoek - vierkant = 2 abs bbA abs bbB:. C ^ 2 lt abs (bbA - bbB) ^ 2, qquad bbA, bbB ne bb0:. abs bb C lt abs (bbA - bbB)