Antwoord:
De cijfers zijn
Uitleg:
Om het antwoord te vinden, stelt u een vergelijking op.
set
Schrijf nu de vergelijking op volgens de vraag
Combineer dezelfde termen.
Stel gelijk aan nul, zodat u kunt factor.
Dat betekent
U kunt het volgende controleren:
Het product van twee opeenvolgende even gehele getallen is 24. Zoek de twee gehele getallen. Antwoord eerst in de vorm van gepaarde punten met de laagste van de twee gehele getallen. Antwoord?
De twee opeenvolgende even gehele getallen: (4,6) of (-6, -4) Laten, kleur (rood) (n en n-2 zijn de twee opeenvolgende even gehele getallen, waar kleur (rood) (n inZZ Product van n en n-2 is 24 ie n (n-2) = 24 => n ^ 2-2n-24 = 0 Nu, [(-6) + 4 = -2 en (-6) xx4 = -24]: .n ^ 2-6n + 4n-24 = 0: .n (n-6) +4 (n-6) = 0:. (N-6) (n + 4) = 0: .n-6 = 0 of n + 4 = 0 ... tot [n inZZ] => kleur (rood) (n = 6 of n = -4 (i) kleur (rood) (n = 6) => kleur (rood) (n-2) = 6-2 = kleur (rood) (4) Dus, de twee opeenvolgende even gehele getallen: (4,6) (ii)) kleur (rood) (n = -4) => kleur (rood) (n-2) = -4-2 = kleur (rood) (- 6) Dus, de
"Lena heeft 2 opeenvolgende gehele getallen.Ze merkt dat hun som gelijk is aan het verschil tussen hun vierkanten. Lena kiest nog eens 2 opeenvolgende gehele getallen en merkt hetzelfde op. Bewijs algebra dat dit geldt voor elke 2 opeenvolgende gehele getallen?
Zie de toelichting alstublieft. Bedenk dat de opeenvolgende gehele getallen met 1 verschillen. Dus als m één geheel getal is, moet het volgende gehele getal n + 1 zijn. De som van deze twee gehele getallen is n + (n + 1) = 2n + 1. Het verschil tussen hun vierkanten is (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, zoals gewenst! Voel de vreugde van wiskunde.!
Wat is het middelste gehele getal van 3 opeenvolgende positieve even gehele getallen als het product van de kleinere twee gehele getallen 2 minder is dan 5 keer het grootste gehele getal?
8 '3 opeenvolgende positieve even gehele getallen kunnen worden geschreven als x; x + 2; x + 4 Het product van de twee kleinere gehele getallen is x * (x + 2) '5 keer het grootste gehele getal' is 5 * (x +4):. x * (x + 2) = 5 * (x + 4) - 2 x ^ 2 + 2x = 5x + 20 - 2 x ^ 2 -3x-18 = 0 (x-6) (x + 3) = 0 We kan het negatieve resultaat uitsluiten omdat de gehele getallen positief zijn, dus x = 6 Het middelste gehele getal is daarom 8