Cosx + sinx = sqrt (cosx)?

Cosx + sinx = sqrt (cosx)?
Anonim

Antwoord:

# Rarrx = 2npi # waar #n in ZZ #

Uitleg:

# Rarrcosx + sinx = sqrtcosx #

# Rarrcosx-sqrtcosx = -sinx #

#rarr (cosx-sqrtcosx) ^ 2 = (- sinx) ^ 2 #

# Rarrcos ^ 2x-2cosx * sqrtcosx + cosx = sin ^ = 2x 1-cos ^ 2x #

# Rarr2cos ^ 2x-2cosx * sqrtcosx + cosx-1 = 0 #

Laat # Sqrtcosx = y # dan # Cosx = y ^ 2 #

# Rarr2 * (y ^ 2) ^ 2-2 * y ^ 2 * y + y ^ 2-1 = 0 #

# Rarr2y 4-2y ^ ^ 3 + y ^ 2-1 = 0 #

# Rarr2y ^ 3 (y-1) + (y + 1) * (y-1) = 0 #

#rarr y-1 2 y ^ 3 + y + 1 = 0 #

Nemen, # Rarry-1 = 0 #

# Rarrsqrtcosx = 1 #

# Rarrcosx = 1 = cos0 #

# Rarrx = 2npi + -0 = 2npi # waar #n in ZZ # wat de generaal is

oplossing voor #X#.