Antwoord:
Uitleg:
De vergelijking van een rechte lijn kan in de vorm worden geschreven
Met
Eerst vinden we het verloop, met behulp van de vergelijking
Opkomst is het verschil in de twee
Run is het verschil tussen de twee
Nu vervangen we de bekende waarden in
Welke is;
Daarom de volledige vergelijking, in de vorm
De vergelijking van regel-CD is y = -2x - 2. Hoe schrijf je een vergelijking van een regel evenwijdig aan lijn-CD in het hellingsintercept met punt (4, 5)?
Y = -2x + 13 Zie uitleg dit is een lange antwoordvraag.CD: "" y = -2x-2 Parallel betekent dat de nieuwe lijn (we noemen dit AB) dezelfde helling zal hebben als CD. "" m = -2:. y = -2x + b Sluit nu het opgegeven punt aan. (x, y) 5 = -2 (4) + b Oplossen voor b. 5 = -8 + b 13 = b Dus de vergelijking voor AB is y = -2x + 13 Controleer nu y = -2 (4) +13 y = 5 Daarom (4,5) staat op de lijn y = -2x + 13
De punt-hellingsvorm van de vergelijking van de lijn die doorloopt (-5, -1) en (10, -7) is y + 7 = -2 / 5 (x-10). Wat is de standaardvorm van de vergelijking voor deze regel?
2 / 5x + y = -3 Het formaat van de standaardvorm voor een vergelijking van een lijn is Ax + By = C. De vergelijking die we hebben, y + 7 = -2/5 (x-10) is momenteel in punt helling vorm. Het eerste dat je moet doen is het verdelen van de -2/5 (x-10): y + 7 = -2/5 (x-10) y + 7 = -2 / 5x + 4 Laten we nu 4 van beide kanten van de kant aftrekken vergelijking: y + 3 = -2 / 5x Aangezien de vergelijking Ax + By = C moet zijn, laten we 3 naar de andere kant van de vergelijking en -2 / 5x naar de andere kant van de vergelijking verplaatsen: 2 / 5x + y = -3 Deze vergelijking is nu in standaardvorm.
Wat is de vergelijking van een regel die doorloopt (2, -4) en een helling van 0 heeft?
Zie onderstaande oplossingsverklaring: Per definitie is een lijn met een helling van 0 een horizontale lijn. Horizontale lijnen hebben dezelfde waarde voor y voor elke waarde van x. In dit probleem is de y-waarde -4 Daarom is de vergelijking van deze regel: y = -4