Antwoord:
Uitleg:
Omdat het gebied van een cirkel is
Vandaar dat de straal met de snelheid verandert
Dus,
De hoogte van een driehoek neemt toe met een snelheid van 1,5 cm / min, terwijl het oppervlak van de driehoek met een snelheid van 5 vierkante cm / min toeneemt. Met welk tempo verandert de voet van de driehoek wanneer de hoogte 9 cm is en het gebied 81 vierkante cm is?
Dit is een probleem met de bijbehorende tarieven (van verandering). De variabelen die van belang zijn, zijn a = hoogte A = gebied en omdat het gebied van een driehoek A = 1 / 2ba is, hebben we b = basis nodig. De opgegeven snelheden zijn in eenheden per minuut, dus de (onzichtbare) onafhankelijke variabele is t = tijd in minuten. We krijgen: (da) / dt = 3/2 cm / min (dA) / dt = 5 cm "" ^ 2 / min En we worden gevraagd om (db) / dt te vinden als a = 9 cm en A = 81cm "" ^ 2 A = 1 / 2ba, differentiërend ten opzichte van t, we krijgen: d / dt (A) = d / dt (1 / 2ba). We hebben de productregel aan de rech
Het volume van een kubus neemt toe met een snelheid van 20 kubieke centimeter per seconde. Hoe snel, in vierkante centimeters per seconde, neemt het oppervlak van de kubus toe op het moment dat elke rand van de kubus 10 centimeter lang is?
Bedenk dat de rand van de kubus varieert met de tijd, dus dat is een functie van tijd l (t); zo:
Water dat lekt op een vloer vormt een cirkelvormig zwembad. De straal van het zwembad neemt toe met een snelheid van 4 cm / min. Hoe snel neemt het oppervlak van het zwembad toe als de straal 5 cm is?
40pi "cm" ^ 2 "/ min" Eerst moeten we beginnen met een vergelijking die we kennen met betrekking tot het gebied van een cirkel, het zwembad en de straal: A = pir ^ 2 We willen echter zien hoe snel het gebied van het zwembad neemt toe, wat veel op snelheid lijkt ... wat veel lijkt op een afgeleide. Als we de afgeleide van A = pir ^ 2 nemen met betrekking tot tijd, t, dan zien we dat: (dA) / dt = pi * 2r * (dr) / dt (Vergeet niet dat de kettingregel rechts van toepassing is handzijde, met r ^ 2 - dit is vergelijkbaar met impliciete differentiatie.) Dus, we willen (dA) / dt bepalen. De vraag vertelde ons d