Antwoord:
Uitleg:
Begin met het vinden van de helling met behulp van de formule:
Als we het laten
Nu met onze helling en een bepaald punt kunnen we de vergelijking van de lijn vinden met behulp van de punthellingformule:
Ik ga het punt gebruiken
Vergelijking:
Herschrijven in
grafiek {5x-23 -7.75, 12.25, -0.84, 9.16}
De vergelijking van een lijn is 2x + 3y - 7 = 0, vind: - (1) helling van lijn (2) de vergelijking van een lijn loodrecht op de gegeven lijn en passeert de kruising van de lijn x-y + 2 = 0 en 3x + y-10 = 0?
-3x + 2y-2 = 0 kleur (wit) ("ddd") -> kleur (wit) ("ddd") y = 3 / 2x + 1 Eerste deel in veel detail dat aantoont hoe de eerste beginselen werken. Eenmaal hieraan gebruikt en met behulp van snelkoppelingen, gebruikt u veel minder regels. kleur (blauw) ("Bepaal het snijpunt van de beginvergelijkingen") x-y + 2 = 0 "" ....... Vergelijking (1) 3x + y-10 = 0 "" .... Vergelijking ( 2) Trek x af van beide zijden van Eqn (1) en geef -y + 2 = -x Vermenigvuldig beide zijden met (-1) + y-2 = + x "" .......... Vergelijking (1_a ) Gebruik Eqn (1_a) substituut voor x in Eqn
Lijn n loopt door punten (6,5) en (0, 1). Wat is het y-snijpunt van lijn k, als lijn k loodrecht staat op lijn n en door het punt (2,4) gaat?
7 is het y-snijpunt van lijn k Eerste, laten we de helling zoeken voor lijn n. (1-5) / (0-6) (-4) / - 6 2/3 = m De helling van lijn n is 2/3. Dat betekent dat de helling van lijn k, die loodrecht staat op lijn n, de negatieve reciprook is van 2/3, of -3/2. Dus de vergelijking die we tot nu toe hebben is: y = (- 3/2) x + b Om b of het y-snijpunt te berekenen, plug je gewoon (2,4) in de vergelijking. 4 = (- 3/2) (2) + b 4 = -3 + b 7 = b Het y-snijpunt is dus 7
Eén lijn passeert de punten (2,1) en (5,7). Een andere lijn passeert door punten (-3,8) en (8,3). Zijn de lijnen parallel, loodrecht of geen van beide?
Niet parallel of loodrecht Als de helling van elke lijn hetzelfde is, zijn ze evenwijdig. Als de gradiënt de negatieve inverse van de andere is, staan ze loodrecht op elkaar. Dat wil zeggen: de ene is m "en de andere is" -1 / m. Laat lijn 1 zijn L_1 Laat regel 2 zijn L_2 Laat het verloop van lijn 1 zijn m_1 Laat het verloop van lijn 2 m_2 "verloop" = ("verander y -as ") / (" Wijziging in x-as ") => m_1 = (7-1) / (5-2) = 6/3 = +2 .............. ....... (1) => m_2 = (3-8) / (8 - (- 3)) = (-5) / (11) ............. ......... (2) De gradiënten zijn niet hetzelfde, dus ze