SinA + cosA = 1 Vind de waarde van cos ^ 2A + cos ^ 4A =?

SinA + cosA = 1 Vind de waarde van cos ^ 2A + cos ^ 4A =?
Anonim

Antwoord:

# Rarrcos ^ 2A + cos ^ 4 (A) = 0 #

Uitleg:

Gegeven, # RarrsinA + cosa = 1 #

# Rarrsin90 ^ + ^ @ cos90 = 1 + 0 = 1 #

Het betekent #90^@# is de wortel van de uitleg

Nu, # Cos ^ 2A + cos ^ 4 (A) = (cos90 ^ @) ^ 2 + (cos90 @ ^) ^ 0 ^ 4 = 2 + 0 ^ 4 = 0 #

Antwoord:

0 of 2

Uitleg:

#sin A + cos A = sqrt2cos (A - pi / 4) = 1 #

#cos (A - pi / 4) = 1 / sqrt2 = sqrt2 / 2 #

Trig-tafel en eenheidscirkel geven 2 oplossingen:

#A - pi / 4 = + - pi / 4 #

een. #A = pi / 4 + pi / 4 = pi / 2 #

#cos A = cos (pi / 2) = 0 # --> # cos ^ 2 A = cos ^ 4 A = 0 #

# cos ^ 2 A + cos ^ 4 A = 0 #

b. #A - pi / 4 = - pi / 4 # --> #A = -pi / 4 + pi / 4 = 0 #

#cos A = 1 # --> #cos ^ 2 A = cos ^ 4 A = 1 #

# cos ^ 2 A + cos ^ 4 A = 1 + 1 = 2. #