Antwoord:
Er zijn twee stappen in een oplossing: de helling vinden en het y-snijpunt vinden. Deze specifieke regel is de horizontale lijn
Uitleg:
De eerste stap is om de helling te vinden:
Zoals we hadden kunnen raden aan het feit dat beide y-waarden van de gegeven punten hetzelfde waren, is dit een horizontale lijn met een helling van
Dit betekent dat wanneer
Standaardvorm - ook bekend als hellingsintercept - voor een lijn is:
In dit geval
De vergelijking van regel-CD is y = -2x - 2. Hoe schrijf je een vergelijking van een regel evenwijdig aan lijn-CD in het hellingsintercept met punt (4, 5)?
Y = -2x + 13 Zie uitleg dit is een lange antwoordvraag.CD: "" y = -2x-2 Parallel betekent dat de nieuwe lijn (we noemen dit AB) dezelfde helling zal hebben als CD. "" m = -2:. y = -2x + b Sluit nu het opgegeven punt aan. (x, y) 5 = -2 (4) + b Oplossen voor b. 5 = -8 + b 13 = b Dus de vergelijking voor AB is y = -2x + 13 Controleer nu y = -2 (4) +13 y = 5 Daarom (4,5) staat op de lijn y = -2x + 13
De punt-hellingsvorm van de vergelijking van de lijn die doorloopt (-5, -1) en (10, -7) is y + 7 = -2 / 5 (x-10). Wat is de standaardvorm van de vergelijking voor deze regel?
2 / 5x + y = -3 Het formaat van de standaardvorm voor een vergelijking van een lijn is Ax + By = C. De vergelijking die we hebben, y + 7 = -2/5 (x-10) is momenteel in punt helling vorm. Het eerste dat je moet doen is het verdelen van de -2/5 (x-10): y + 7 = -2/5 (x-10) y + 7 = -2 / 5x + 4 Laten we nu 4 van beide kanten van de kant aftrekken vergelijking: y + 3 = -2 / 5x Aangezien de vergelijking Ax + By = C moet zijn, laten we 3 naar de andere kant van de vergelijking en -2 / 5x naar de andere kant van de vergelijking verplaatsen: 2 / 5x + y = -3 Deze vergelijking is nu in standaardvorm.
Wat is de vergelijking van een regel in standaardvorm die doorloopt (2,3) en (-1,0)?
Zie een oplossingsproces hieronder: Eerst kunnen we de helling van de lijn bepalen. De helling kan worden gevonden met behulp van de formule: m = (kleur (rood) (y_2) - kleur (blauw) (y_1)) / (kleur (rood) (x_2) - kleur (blauw) (x_1)) Waarin m is de helling en (kleur (blauw) (x_1, y_1)) en (kleur (rood) (x_2, y_2)) zijn de twee punten op de lijn. Vervangen van de waarden van de punten in het probleem geeft: m = (kleur (rood) (0) - kleur (blauw) (3)) / (kleur (rood) (- 1) - kleur (blauw) (2)) = (-3) / - 3 = 1 We kunnen nu de formule met punthelling gebruiken om een vergelijking voor de lijn te schrijven. De punthellingsvorm