Trig-functies vertellen ons de relatie tussen hoeken en zijlengten in rechthoekige driehoeken. De reden dat ze nuttig zijn, heeft te maken met de eigenschappen van soortgelijke driehoeken.
Vergelijkbare driehoeken zijn driehoeken die dezelfde hoekmetingen hebben. Als gevolg hiervan zijn de verhoudingen tussen dezelfde zijden van twee driehoeken voor elke zijde gelijk. In de onderstaande afbeelding is die verhouding
De eenheidscirkel geeft ons relaties tussen de lengten van de zijden van verschillende rechthoekige driehoeken en hun hoeken. Al deze driehoeken hebben een hypotenusa van
Laten we aannemen dat we een hebben
Dus om de andere zijden van de driehoek op te lossen, hoeven we ons alleen maar te vermenigvuldigen
Je kunt een willekeurige rechterdriehoek die je kent aan minstens één kant oplossen door een vergelijkbare driehoek op de cirkel van de eenheid te vinden en vervolgens te vermenigvuldigen
De binaire bewerking is gedefinieerd als a + b = ab + (a + b), waarbij a en b twee reële cijfers zijn.De waarde van het identiteitselement van deze bewerking, gedefinieerd als het aantal x zodat een x = a, voor elke a, is?
X = 0 Als een vierkant x = a en dan bijl + a + x = a of (a + 1) x = 0 Als dit zou moeten voorkomen voor alle a dan is x = 0
Twee gelijkbenige driehoeken hebben dezelfde basislengte. De poten van een van de driehoeken zijn twee keer zo lang als de benen van de ander. Hoe vind je de lengtes van de zijden van de driehoeken als hun omtrek 23 cm en 41 cm zijn?
Elke stap wordt zo lang getoond. Spring over de stukjes die je kent. Basis is 5 voor beide De kleinere poten zijn elk 9 De langere poten zijn 18 elk Soms helpt een snelle schets bij het vinden van wat te doen Voor driehoek 1 -> a + 2b = 23 "" ........... .... Vergelijking (1) Voor driehoek 2 -> a + 4b = 41 "" ............... Vergelijking (2) ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ : a = 23-2b "" ......................... Vergelijking (1_a) Trek voor vergelijking (2) 4b van beide zijden af en geef daarb
Laat [(x_ (11), x_ (12)), (x_21, x_22)] worden gedefinieerd als een object dat matrix wordt genoemd. De determinant van een matrix wordt gedefinieerd als [(x_ (11) xxx_ (22)) - (x_21, x_12)]. Als M [(- 1,2), (-3, -5)] en N = [(- 6,4), (2, -4)] wat is dan de determinant van M + N & MxxN?
De determinant van is M + N = 69 en die van MXN = 200ko. Men moet ook de som en het product van de matrices definiëren. Maar hier wordt verondersteld dat ze net zo zijn gedefinieerd in handboeken voor 2xx2 matrix. M + N = [(- 1,2), (- 3, -5)] + [(- 6,4), (2, -4)] = [(- 7,6), (- 1, - 9)] Vandaar dat de bepalende factor (-7xx-9) - (- 1xx6) = 63 + 6 = 69 MXN = [(((- 1) xx (-6) + 2xx2), ((- 1) xx4 + 2xx (-4))), (((- 1) xx2 + (- 3) xx (-4)), ((- 3) xx4 + (- 5) xx (-4)))] = [(10, -12 ), (10,8)] Vandaar deeminatie van MXN = (10xx8 - (- 12) xx10) = 200