Antwoord:
Uitleg:
Als
dan de hoogte van
(Sinds
en
Als
-
# B # 's maximaal gebied zal optreden als de lengte van de lengte#14# komt overeen met# DeltaA # is kant van lengte#3# In dit geval
# DeltaB # de hoogte zal zijn# 4xx14 / 3 = 56/3 # en het gebied zal zijn
# (56 / 3xx14) / 2 = 130 2/3 # (sq. eenheden) -
# B # 's minimum gebied zal optreden dan de kant van de lengte#14# komt overeen met# DeltaA # is kant van lengte#5# In dit geval
#color (wit) ("XXX") B # de hoogte zal zijn# 4xx14 / 5 = 56/5 # #color (wit) ("XXX") B # basis zal zijn# 3xx14 / 5 = 42/5 # en
#color (wit) ("XXX") B # het gebied zal zijn# (56 / 5xx42 / 5) /2=2352/50=4704/100=47.04# (Sq.units)
Driehoek A heeft een oppervlakte van 12 en twee zijden van lengte 5 en 7. Driehoek B is vergelijkbaar met driehoek A en heeft een zijde met een lengte van 19. Wat zijn de maximale en minimaal mogelijke gebieden van driehoek B?
Maximum oppervlakte = 187.947 "" vierkante eenheden Minimale oppervlakte = 88.4082 "" vierkante eenheden De driehoeken A en B zijn vergelijkbaar. Op verhouding en verhoudingsmethode van oplossing heeft driehoek B drie mogelijke driehoeken. Voor driehoek A: de zijkanten zijn x = 7, y = 5, z = 4.800941906394, hoek Z = 43.29180759327 ^ @ De hoek Z tussen zijden x en y is verkregen met behulp van de formule voor driehoeksgebied Area = 1/2 * x * y * sin Z 12 = 1/2 * 7 * 5 * sin ZZ = 43.29180759327 ^ @ Drie mogelijke driehoeken voor driehoek B: de zijden zijn driehoek 1. x_1 = 19, y_1 = 95/7, z_1 = 13.0311280
Driehoek A heeft een oppervlakte van 12 en twee zijden van lengte 6 en 9. Driehoek B is vergelijkbaar met driehoek A en heeft een zijde met een lengte van 15. Wat zijn de maximale en minimaal mogelijke gebieden van driehoek B?
Delta's A en B zijn vergelijkbaar. Om het maximale oppervlak van Delta B te krijgen, moet kant 15 van Delta B overeenkomen met kant 6 van Delta A. Zijden hebben de verhouding 15: 6. Daarom zijn de gebieden in de verhouding 15 ^ 2: 6 ^ 2 = 225: 36 Maximumoppervlak van driehoek B = (12 * 225) / 36 = 75 Op dezelfde manier als om het minimale oppervlak te krijgen, komt zijde 9 van Delta A overeen met zijde 15 van Delta B. Zijkanten in verhouding 15: 9 en gebieden 225: 81 Minimaal gebied van Delta B = (12 * 225) / 81 = 33.3333
Driehoek A heeft een oppervlakte van 12 en twee zijden van lengte 7 en 7. Driehoek B is vergelijkbaar met driehoek A en heeft een zijde met een lengte van 19. Wat zijn de maximale en minimaal mogelijke gebieden van driehoek B?
Gebied van driehoek B = 88.4082 Aangezien driehoek A gelijkbenig is, is driehoek B ook gelijkbenig.De zijden van de driehoeken B & A zijn in de verhouding 19: 7. De gebieden hebben de verhouding 19 ^ 2: 7 ^ 2 = 361: 49:. Gebied van driehoek B = (12 * 361) / 49 = 88.4082