Antwoord:
18
Uitleg:
Stel het eerste punt in als punt 1
Stel het tweede punt in als punt 2
Het eerste ding om waar te nemen is dat de waarde van
Elk punt dat horizontaal wordt gemeten vanaf de y-as is hetzelfde, namelijk 5
Dus om de afstand tussen de twee punten te vinden, hoeven we ons alleen te concentreren op de
Jack's lengte is 2/3 van de lengte van Leslie. Leslie's lengte is 3/4 van de lengte van Lindsay. Als Lindsay 160 cm lang is, zoek dan Jack's lengte en Leslie's lengte?
Leslie's = 120cm en Jack's hoogte = 80cm Leslie's height = 3 / cancel4 ^ 1xxcancel160 ^ 40/1 = 120cm Jacks height = 2 / cancel3 ^ 1xxcancel120 ^ 40/1 = 80cm
De eindpunten van lijnsegment PQ zijn A (1,3) en Q (7, 7). Wat is het middelpunt van lijnsegment PQ?
De verandering in coördinaten van het ene uiteinde naar het middelpunt is de helft van de verandering in coördinaten van het ene naar het andere uiteinde. Om van P naar Q te gaan, verhoogt de x-coördinaat met 6 en de y-coördinaat met 4. Om van P naar het middelpunt te gaan, wordt de x-coördinaat met 3 verhoogd en de y-coördinaat met 2; dit is het punt (4, 5)
Een lijnsegment heeft eindpunten op (a, b) en (c, d). Het lijnsegment wordt verwijd door een factor van r rond (p, q). Wat zijn de nieuwe eindpunten en lengte van het lijnsegment?
(a, b) tot ((1-r) p + ra, (1-r) q + rb), (c, d) tot ((1-r) p + rc, (1-r) q + rd), nieuwe lengte l = r sqrt {(ac) ^ 2 + (bd) ^ 2}. Ik heb een theorie dat al deze vragen hier zijn, dus er is iets voor newbies om te doen. Ik doe de algemene zaak hier en kijk wat er gebeurt. We vertalen het vlak zodat het dilatatiepunt P op de oorsprong is gericht. Vervolgens schaalt de uitzetting de coördinaten met een factor r. Vervolgens vertalen we het vlak terug: A '= r (A - P) + P = (1-r) P + r A Dat is de parametrische vergelijking voor een lijn tussen P en A, waarbij r = 0 geeft P, r = 1 geven A, en r = r geven A ', het be