Antwoord:
Uitleg:
# "de vergelijking van een lijn in" kleur (blauw) "hellingsintercept" # is.
# • kleur (wit) (x) y = mx + b #
# "waar m de helling is en b het y-snijpunt" #
# "om te berekenen m gebruik de" kleur (blauw) "verloopformule" #
# • kleur (wit) (x) m = (y_2-y_1) / (x_2-x_1) #
# "let" (x_1, y_1) = (- 2,13) "en" (x_2, y_2) = (0, -2) #
#rArrm = (- 13/02) / (0 - (- 2)) = (- 15) / 2 = -15/2 #
# rArry = -15 / 2x + blarrcolor (blauw) "is de gedeeltelijke vergelijking" #
# "om b te vinden vervangt een van de twee gegeven punten in" #
# "de gedeeltelijke vergelijking" #
# "gebruiken" (0, -2) "en vervolgens" #
# -2 = 0 + brArrb = -2 #
# rArry = -15 / 2x-2larrcolor (rood) "is de vergelijking van de regel" #
De vergelijking van regel-CD is y = -2x - 2. Hoe schrijf je een vergelijking van een regel evenwijdig aan lijn-CD in het hellingsintercept met punt (4, 5)?
Y = -2x + 13 Zie uitleg dit is een lange antwoordvraag.CD: "" y = -2x-2 Parallel betekent dat de nieuwe lijn (we noemen dit AB) dezelfde helling zal hebben als CD. "" m = -2:. y = -2x + b Sluit nu het opgegeven punt aan. (x, y) 5 = -2 (4) + b Oplossen voor b. 5 = -8 + b 13 = b Dus de vergelijking voor AB is y = -2x + 13 Controleer nu y = -2 (4) +13 y = 5 Daarom (4,5) staat op de lijn y = -2x + 13
De punt-hellingsvorm van de vergelijking van de lijn die doorloopt (-5, -1) en (10, -7) is y + 7 = -2 / 5 (x-10). Wat is de standaardvorm van de vergelijking voor deze regel?
2 / 5x + y = -3 Het formaat van de standaardvorm voor een vergelijking van een lijn is Ax + By = C. De vergelijking die we hebben, y + 7 = -2/5 (x-10) is momenteel in punt helling vorm. Het eerste dat je moet doen is het verdelen van de -2/5 (x-10): y + 7 = -2/5 (x-10) y + 7 = -2 / 5x + 4 Laten we nu 4 van beide kanten van de kant aftrekken vergelijking: y + 3 = -2 / 5x Aangezien de vergelijking Ax + By = C moet zijn, laten we 3 naar de andere kant van de vergelijking en -2 / 5x naar de andere kant van de vergelijking verplaatsen: 2 / 5x + y = -3 Deze vergelijking is nu in standaardvorm.
Wat is de vergelijking van een regel die doorloopt (2, -4) en een helling van 0 heeft?
Zie onderstaande oplossingsverklaring: Per definitie is een lijn met een helling van 0 een horizontale lijn. Horizontale lijnen hebben dezelfde waarde voor y voor elke waarde van x. In dit probleem is de y-waarde -4 Daarom is de vergelijking van deze regel: y = -4