Hier / de manier waarop ik dit doe is:
- Ik zal wat laten
-
Dus ik krijg,
# "" sintheta = 9x "" # en# "" cosalpha = 9x # -
Ik differentieer beide impliciet als volgt:
# => (costheta) (d (theta)) / (dx) = 9 "" => (d (theta)) / (dx) = 9 / (costheta) = 9 / (sqrt (1-sin ^ 2theta)) = 9 / (sqrt (1- (9x) ^ 2) #
- Vervolgens differentieer ik
-
Over het geheel genomen
# "" f (x) = theta + alpha # -
Zo,
#f ^ (') (x) = (d (theta)) / (dx) + (d (a)) / (dx) = 9 / sqrt (1- (9x) ^ 2) -9 / sqrt (1- (9x) ^ 2) = 0 #
Hoe vereenvoudig ik sin (arccos (sqrt (2) / 2) -arcsin (2x))?
Ik krijg sin (arccos (sqrt {2} / 2) - arcsin (2x)) = {2x pm sqrt {1 - 4x ^ 2}} / {sqrt {2}} We hebben de sinus van het verschil, dus stap één zal de verschilhoekformule zijn, sin (ab) = sin a cos b - cos a sin b sin (arccos (sqrt {2} / 2) - arcsin (2x)) = sin arccos (sqrt {2} / 2) cos arcsin (2x) + cos arccos (sqrt {2} / 2) sin arcsin (2x) Nou, de sinus van arcsine en de cosinus van arccosine zijn eenvoudig, maar hoe zit het met de anderen? We herkennen arccos ( sqrt {2} / 2) als pm 45 ^ circ, dus sin arccos ( sqrt {2} / 2) = pm sqrt {2} / 2 Ik laat de pm daar; Ik probeer de conventie te volgen dat arccos alle in
Hoe bewijs je arcsin x + arccos x = pi / 2?
Zoals getoond Laat arcsinx = theta dan x = sintheta = cos (pi / 2-theta) => arccosx = pi / 2-theta = pi / 2-arcsinx => arccosx = pi / 2-arcsinx => arcsinx + arccosx = pi / 2
Hoe los je arcsin (sqrt (2x)) = arccos (sqrtx) op?
X = 1/3 We moeten de sinus of de cosinus van beide kanten nemen. Pro Tip: kies voor cosinus. Het maakt hier waarschijnlijk niet uit, maar het is een goede regel.Dus we zullen geconfronteerd worden met cos arcsin s Dat is de cosinus van een hoek waarvan sinus is s, dus moet cos arcsin s = pm sqrt {1 - s ^ 2} Laten we nu het probleem arcsin doen (sqrt {2x}) = arccos ( sqrt x) cos arcsin ( sqrt {2 x}) = cos arccos ( sqrt {x}) pm sqrt {1 - (sqrt {2 x}) ^ 2} = sqrt {x} We heb een pm zodat we geen externe oplossingen introduceren als we beide kanten vierkant maken. 1 - 2 x = x 1 = 3x x = 1/3 Controle: arcsin sqrt {2/3} stackrel?