Antwoord:
reeks
Uitleg:
Omdat we een vierkantswortel hebben, kan de onderliggende waarde niet negatief zijn:
Daarom is het domein:
We bouwen nu de vergelijking uit het domein en vinden het bereik:
reeks
Het domein van f (x) is de verzameling van alle reële waarden behalve 7 en het domein van g (x) is de verzameling van alle reële waarden behalve van -3. Wat is het domein van (g * f) (x)?
Alle reële getallen behalve 7 en -3 wanneer je twee functies vermenigvuldigt, wat doen we? we nemen de f (x) -waarde en vermenigvuldigen deze met de g (x) -waarde, waarbij x hetzelfde moet zijn. Beide functies hebben echter beperkingen, 7 en -3, dus het product van de twee functies moet * beide * beperkingen hebben. Meestal als bewerkingen op functies hebben, als de vorige functies (f (x) en g (x)) beperkingen hadden, worden ze altijd genomen als onderdeel van de nieuwe beperking van de nieuwe functie of hun werking. Je kunt dit ook visualiseren door twee rationale functies te maken met verschillende beperkte waarden,
De functie f is zodanig dat f (x) = a ^ 2x ^ 2-ax + 3b voor x <1 / (2a) Waar a en b constant zijn voor het geval dat a = 1 en b = -1 Find f ^ - 1 (cf en vind zijn domein Ik ken het domein van f ^ -1 (x) = bereik van f (x) en het is -13/4 maar ik weet geen ongelijkheid tekenrichting?
Zie hieronder. a ^ 2x ^ 2-ax + 3b x ^ 2-x-3 Range: in vorm zetten y = a (xh) ^ 2 + kh = -b / (2a) k = f (h) h = 1/2 f (h) = f (1/2) = (1/2) ^ 2- (1/2) -3 = -13 / 4 Minimale waarde -13/4 Dit gebeurt met x = 1/2 Het bereik is (- 13/4, oo) f ^ (- 1) (x) x = y ^ 2-y-3 y ^ 2-y- (3-x) = 0 Met behulp van de kwadratische formule: y = (- (- 1) + -sqrt ((- 1) ^ 2-4 (1) (- 3-x))) / 2 y = (1 + -sqrt (4x + 13)) / 2 f ^ (- 1) (x) = ( 1 + sqrt (4x + 13)) / 2 f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 Met een kleine gedachte kunnen we zien dat voor het domein dat we hebben de vereiste inverse is : f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 Met do
Laat het domein van f (x) [-2.3] zijn en het bereik is [0,6]. Wat is het domein en bereik van f (-x)?
Het domein is het interval [-3, 2]. Het bereik is het interval [0, 6]. Precies zoals het is, is dit geen functie, omdat het domein slechts het getal -2.3 is, terwijl het bereik een interval is. Maar in de veronderstelling dat dit slechts een typfout is, en het werkelijke domein het interval [-2, 3] is, is dit als volgt: Laat g (x) = f (-x). Aangezien f zijn onafhankelijke variabele vereist om alleen waarden in het interval [-2, 3] te nemen, moet -x (negatief x) zich binnen [-3, 2] bevinden, wat het domein van g is. Aangezien g zijn waarde verkrijgt via functie f, blijft het bereik hetzelfde, ongeacht wat we als de onafhank