Antwoord:
Uitleg:
Om dit probleem op te lossen kunnen we de punthellingsformule gebruiken.
Om de formule met punthelling te gebruiken, moeten we eerst de helling bepalen.
De helling kan worden gevonden met behulp van de formule:
Waar
Het substitueren van de punten die we in het probleem kregen geeft een helling van:
Nu we de helling hebben,
De formule met punthelling stelt:
Waar
Het substitueren van onze helling en een van de punten geeft:
We kunnen nu oplossen voor
De vergelijking van de curve wordt gegeven door y = x ^ 2 + ax + 3, waarbij a een constante is. Gegeven dat deze vergelijking ook kan worden geschreven als y = (x + 4) ^ 2 + b, vind (1) de waarde van a en van b (2) de coördinaten van het keerpunt van de curve Iemand kan helpen?
De uitleg zit in de afbeeldingen.
Wat is de vergelijking van de locus van punten op een afstand van sqrt (20) eenheden van (0,1)? Wat zijn de coördinaten van de punten op de lijn y = 1 / 2x + 1 op een afstand van sqrt (20) van (0, 1)?
Vergelijking: x ^ 2 + (y-1) ^ 2 = 20 Coördinaten van gespecificeerde punten: (4,3) en (-4, -1) Deel 1 De locus van punten op een afstand van sqrt (20) van (0 , 1) is de omtrek van een cirkel met radius sqrt (20) en midden op (x_c, y_c) = (0,1) De algemene vorm voor een cirkel met radiuskleur (groen) (r) en midden (kleur (rood) ) (x_c), kleur (blauw) (y_c)) is kleur (wit) ("XXX") (x-kleur (rood) (x_c)) ^ 2+ (y-kleur (blauw) (y_c)) ^ 2 = kleur (groen) (r) ^ 2 In dit geval kleur (wit) ("XXX") x ^ 2 + (y-1) ^ 2 = 20 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Wat is de hellingsinterceptievorm van de vergelijking die door de gegeven punten gaat (1, -2) en (4, -5)?
Y = -x-1 De vergelijking van een lijn in kleur (blauw) "helling-onderscheppen vorm" is. kleur (rood) (balk (ul (| kleur (wit) (2/2) kleur (zwart) (y = mx + b) kleur (wit) (2/2) |))) waarbij m staat voor de helling en b , het y-snijpunt. We moeten m en b vinden. Om m te vinden, gebruikt u de kleur (blauw) "verloopformule" kleur (oranje) "Herinnering" kleur (rood) (balk (ul (| kleur (wit) (2/2) kleur (zwart) (m = (y_2- y_1) / (x_2-x_1)) kleur (wit) (2/2) |))) waarbij (x_1, y_1), (x_2, y_2) "2 coördinaatpunten zijn" De 2 punten hier zijn (1, -2 ) en (4, -5) laat (x_1, y_1) = (1, -2