Hoe vind je het antiderivaat van cos ^ 4 (x) dx?

Hoe vind je het antiderivaat van cos ^ 4 (x) dx?
Anonim

Antwoord:

Je wilt het opsplitsen met trig-identiteiten om mooie, gemakkelijke integralen te krijgen.

Uitleg:

# cos ^ 4 (x) = cos ^ 2 (x) * cos ^ 2 (x) #

We kunnen omgaan met de # Cos ^ 2 (x) # eenvoudig genoeg door de cosinus-formule met de dubbele hoek te herschikken.

# cos ^ 4 (x) = 1/2 (1 + cos (2x)) * 1/2 (1 + cos (2x)) #

# cos ^ 4 (x) = 1/4 (1 + 2cos (2x) + cos ^ 2 (2x)) #

# cos ^ 4 (x) = 1/4 (1 + 2cos (2x) + 1/2 (1 + cos (4x))) #

# cos ^ 4 (x) = 3/8 + 1/2 * cos (2x) + 1/8 * cos (4x) #

Zo, #int cos ^ 4 (x) dx = 3/8 * int dx + 1/2 * int cos (2x) dx + 1/8 * int cos (4x) dx #

#int cos ^ 4 (x) dx = 3 / 8x + 1/4 * sin (2x) + 1/32 * sin (4x) + C #