Antwoord:
Uitleg:
Het concept dat hier wordt toegepast, is het koppel. Om ervoor te zorgen dat de hendel niet omkantelt of draait, moet deze een netto koppel van nul hebben.
Nu is de formule van het koppel
Neem een voorbeeld om te begrijpen, als we een stok vasthouden en een gewicht aan de voorkant van de stok bevestigen, lijkt het niet te zwaar, maar als we het gewicht naar het einde van de stok verplaatsen, lijkt het een stuk zwaarder. Dit komt omdat het koppel toeneemt.
Nu voor het koppel hetzelfde te zijn,
Het eerste blok weegt 2 kg en oefent ongeveer uit
Het eerste blok weegt 8 kg en oefent ongeveer uit
Dit in de formule te plaatsen,
We krijgen dat x = 1m en daarom moet het op een afstand van 1m worden geplaatst
Antwoord:
De afstand is
Uitleg:
De massa
De massa
De afstand
Het nemen van momenten over het steunpunt
De afstand is
Een gebalanceerde hefboom heeft twee gewichten, de eerste met massa 7 kg en de tweede met massa 4 kg. Als het eerste gewicht zich op 3 m van het draaipunt bevindt, hoe ver is het tweede gewicht dan van het draaipunt?
Gewicht 2 is 5.25m van het draaipunt Moment = Force * Afstand A) Gewicht 1 heeft een moment van 21 (7kg xx3m) Gewicht 2 moet ook een moment van 21 B hebben) 21/4 = 5.25m Strikt genomen moet de kg worden omgezet naar Newtons in zowel A als B omdat de momenten worden gemeten in Newton Meters, maar de zwaartekrachtconstanten worden opgeheven in B, zodat ze omwille van de eenvoud weggelaten werden
Een gebalanceerde hefboom heeft twee gewichten, de eerste met massa 15 kg en de tweede met massa 14 kg. Als het eerste gewicht zich op 7 m van het draaipunt bevindt, hoe ver is het tweede gewicht dan van het draaipunt?
B = 7,5 m F: "het eerste gewicht" S: "het tweede gewicht" a: "afstand tussen het eerste gewicht en fulcrum" b: "afstand tussen het tweede gewicht en steunpunt" F * a = S * b 15 * cancel (7) = cancel (14) * b 15 = 2 * bb = 7,5 m
Een gebalanceerde hefboom heeft twee gewichten, de eerste met massa 8 kg en de tweede met massa 24 kg. Als het eerste gewicht zich op 2 m van het draaipunt bevindt, hoe ver is het tweede gewicht dan van het draaipunt?
Omdat de hendel gebalanceerd is, is de som van de koppels gelijk aan 0 Antwoord is: r_2 = 0.bar (66) m Omdat de hendel gebalanceerd is, is de som van de koppels gelijk aan 0: Στ = 0 Over het bord, klaarblijkelijk voor de hendel die moet worden gebalanceerd als het eerste gewicht de neiging heeft om het object met een bepaald koppel te draaien, heeft het andere gewicht een tegengesteld koppel. Laat de massa zijn: m_1 = 8kg m_2 = 24kg τ_ (m_1) -τ_ (m_2) = 0 τ_ (m_1) = τ_ (m_2) F_1 * r_1 = F_2 * r_2 m_1 * cancel (g) * r_1 = m_2 * cancel (g) * r_2 r_2 = m_1 / m_2 * r_1 r_2 = 8/24 * 2 annuleren ((kg) / (kg)) * m r_2 = 2/3 m of