Antwoord:
op 98 mijl bedragen de kosten van de huur een auto $ 44,
Uitleg:
De formule voor dit probleem is
Als de totale kosten $ 44 kunnen zijn, kunnen we dit vervangen
Stel dat tijdens een testrit van twee auto's, één auto 248 mijl aflegt in dezelfde tijd dat de tweede auto 200 mijl aflegt. Als de snelheid van een auto 12 km per uur sneller is dan de snelheid van de tweede auto, hoe vind je de snelheid van beide auto's?
De eerste auto rijdt met een snelheid van s_1 = 62 mi / uur. De tweede auto rijdt met een snelheid van s_2 = 50 mi / uur. Het is niet de tijd dat de auto's reizen s_1 = 248 / t en s_2 = 200 / t Er wordt ons verteld: s_1 = s_2 + 12 Dat is 248 / t = 200 / t + 12 rARr 248 = 200 + 12t rArr 12t = 48 rArr t = 4 s_1 = 248/4 = 62 s_2 = 200/4 = 50
De kosten om een bouwkraan te huren bedragen $ 750 per dag plus $ 250 per uur gebruik. Wat is het maximale aantal uren dat de kraan elke dag kan worden gebruikt als de huur niet hoger is dan $ 2500 per dag?
Optimalisatieprobleem. 2500> 750 + (250 * x). Max 7 uur per dag. Wanneer je 2500> 750 + (250 * x) oplost, krijg je x = 6.99 (maximaal aantal uren dat de kraan elke dag moet worden bediend).
Ski Heaven rekent $ 50 per dag en .75 per mijl om een sneeuwscooter te huren. Ski Club rekent $ 30 per dag en $ 1,00 per mijl om een sneeuwscooter te huren. Na hoeveel mijlen zullen de bedrijven hetzelfde bedrag in rekening brengen?
Bekijk hieronder een oplossingsprocedure: We kunnen een formule schrijven voor het huren van een sneeuwmobiel van Ski Heaven als: c_h = $ 50 + $ 0,75 m waarbij m het aantal mijlen is. We kunnen een formule schrijven voor het huren van een sneeuwmobiel van Ski Club als: c_c = $ 30 + $ 1,00 m waarbij m het aantal mijlen is. Om te bepalen na hoeveel mijlen c_h = c_c we de rechterkant van de twee vergelijkingen kunnen vergelijken en oplossen voor m: $ 50 + $ 0,75m = $ 30 + $ 1,00m $ 50 - kleur (blauw) ($ 30) + $ 0,75m - kleur (rood) ($ 0,75 m) = $ 30 - kleur (blauw) ($ 30) + $ 1,00 m - kleur (rood) ($ 0,75 m) $ 20 + 0 = 0 + ($