Antwoord:
Uitleg:
Ons grote probleem in deze integraal is de wortel, dus we willen er vanaf. We kunnen dit doen door een vervanging te introduceren
Dus we verdelen door (en onthouden, delen door een reciproque is hetzelfde als vermenigvuldigen met alleen de noemer) om te integreren met betrekking tot
Nu hoeven we alleen de
We kunnen dit terug in onze integraal pluggen om te krijgen:
Dit kan worden geëvalueerd met behulp van de omgekeerde machtsregel:
Vervangend voor
Wat is (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt (3) sqrt (5))?
2/7 We nemen, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5 -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3 ) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (cancel (2sqrt15) -5 + 2 * 3cancel (-sqrt15) - cancel (2sqrt15) -5 + 2 * 3 + cancel (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 Merk op dat, als in de noemers (sqrt3 + sqrt (3 + sqrt5)) en (sqrt
Wat is de vergelijking van de locus van punten op een afstand van sqrt (20) eenheden van (0,1)? Wat zijn de coördinaten van de punten op de lijn y = 1 / 2x + 1 op een afstand van sqrt (20) van (0, 1)?
Vergelijking: x ^ 2 + (y-1) ^ 2 = 20 Coördinaten van gespecificeerde punten: (4,3) en (-4, -1) Deel 1 De locus van punten op een afstand van sqrt (20) van (0 , 1) is de omtrek van een cirkel met radius sqrt (20) en midden op (x_c, y_c) = (0,1) De algemene vorm voor een cirkel met radiuskleur (groen) (r) en midden (kleur (rood) ) (x_c), kleur (blauw) (y_c)) is kleur (wit) ("XXX") (x-kleur (rood) (x_c)) ^ 2+ (y-kleur (blauw) (y_c)) ^ 2 = kleur (groen) (r) ^ 2 In dit geval kleur (wit) ("XXX") x ^ 2 + (y-1) ^ 2 = 20 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Wat is de integraal van int (sec ^ 2x) / sqrt (4-sec ^ 2x) dx?
Het antwoord op deze vraag = sin ^ (- 1) (tanx / sqrt3) Voor deze take tanx = t Then sec ^ 2x dx = dt Ook sec ^ 2x = 1 + tan ^ 2x Als we deze waarde in de oorspronkelijke vergelijking zetten, krijgen we intdt / (sqrt (3-t ^ 2)) = sin ^ (- 1) (t / sqrt3) = sin ^ (- 1) (tanx / sqrt3) Ik hoop dat het helpt !!