Antwoord:
De primaire functie van de cuticula van de plant is als een waterdoorlatendheidbarrière die de verdamping van water van het epidermale oppervlak voorkomt.
Uitleg:
Het voorkomt ook dat extern water en opgeloste stoffen de weefsels binnendringen. Het voorkomt de besmetting van plantenweefsels met uitwendig water, vuil en micro-organismen.
De cuticula van Nelumbo nucifera hebben ultra hydrofobe en zelfreinigende eigenschappen.
Een cuticula van een plant is een beschermende film die de opperhuid van bladeren, jonge scheuten en andere luchtplantorganen zonder periderm bedekt.
De grafiek van de functie f (x) = (x + 2) (x + 6) wordt hieronder getoond. Welke verklaring over de functie is waar? De functie is positief voor alle reële waarden van x waarbij x> -4. De functie is negatief voor alle reële waarden van x waarbij -6 <x <-2.
De functie is negatief voor alle reële waarden van x waarbij -6 <x <-2.
De nullen van een functie f (x) zijn 3 en 4, terwijl de nullen van een tweede functie g (x) 3 en 7 zijn. Wat zijn de nul (n) van de functie y = f (x) / g (x )?
Alleen nul van y = f (x) / g (x) is 4. Als nullen van een functie f (x) 3 en 4 zijn, betekent dit (x-3) en (x-4) factoren van f (x ). Verder zijn nullen van een tweede functie g (x) 3 en 7, wat betekent (x-3) en (x-7) zijn factoren van f (x). Dit betekent in de functie y = f (x) / g (x), hoewel (x-3) de noemer g moet annuleren (x) = 0 is niet gedefinieerd, wanneer x = 3. Het is ook niet gedefinieerd wanneer x = 7. Daarom hebben we een gat op x = 3. en alleen nul van y = f (x) / g (x) is 4.
Wat zijn kenmerken van de grafiek van de functie f (x) = (x + 1) ^ 2 + 2? Vink alles aan wat van toepassing is. Het domein bestaat uit echte cijfers. Het bereik is alle reële getallen groter dan of gelijk aan 1. Het y-snijpunt is 3. De grafiek van de functie is 1 eenheid omhoog en
Eerste en derde zijn waar, tweede is fout, vierde is onvoltooid. - Het domein is inderdaad alle echte cijfers. Je kunt deze functie herschrijven als x ^ 2 + 2x + 3, wat een polynoom is, en als dusdanig domein mathbb {R} heeft. Het bereik is niet allemaal reëel getal groter dan of gelijk aan 1, omdat het minimum 2 is. feit. (x + 1) ^ 2 is een horizontale vertaling (een eenheid over) van de "strandard" parabool x ^ 2, die een bereik [0, infty) heeft. Wanneer u 2 toevoegt, verschuift u de grafiek verticaal met twee eenheden, dus het u-bereik is [2, infty) Om het y-snijpunt te berekenen, plugt u gewoon x = 0 in