Antwoord:
Uitleg:
De decimalen staan voor tienden, honderdsten, duizendsten etc.
zoals
Er is geen berekening nodig - hetZELFDE nummer wordt net in een andere vorm geschreven.
De eerste TWEE decimale posities geven het hele aantal procenten aan, de cijfers erna vertegenwoordigen fracties van een procent.
Hier zijn nog enkele voorbeelden voor duidelijkheid en oefening.
Terugkerende decimalen vormen een probleem - ze moeten meestal worden afgerond.
De volgende veel voorkomende moeten uit het hoofd worden geleerd.
Gebruik ratio en verhouding ... help me deze op te lossen. 12 mijl is ongeveer gelijk aan 6 kilometer. (a) Hoeveel kilometer zijn gelijk aan 18 mijl? (b) Hoeveel mijlen zijn gelijk aan 42 kilometer?
A 36 km B. 21 mijl De verhouding is 6/12, die kan worden teruggebracht tot 1 mijl / 2 km dus (2 km) / (1 m) = (x km) / (18 m) Vermenigvuldig beide zijden met 18 mijl ( 2km) / (1m) xx 18 m = (x km) / (18 m) xx 18 m de kilometers verdelen elkaar en verlaten 2 km xx 18 = x 36 km = x de verhouding rond voor deel b geeft (1 m) / (2 km) = (xm) / (42 km) Vermenigvuldig beide zijden met 42 km (1 m) / (2 km) xx 42 km = (xm) / (42 km) xx 42 km De km verdelen zich 21 m = xm
Een lijn met de beste fit voorspelt dat wanneer x gelijk is aan 35, y gelijk is aan 34,785, maar y gelijk is aan 37. Wat is in dit geval de rest?
2.215 Residu wordt gedefinieerd als e = y - hat y = 37 - 34.785 = 2.215
Een auto daalt met een snelheid van 20% per jaar. Aan het einde van elk jaar is de auto vanaf het begin van het jaar 80% van zijn waarde waard. Welk percentage van de oorspronkelijke waarde is de auto waard aan het einde van het derde jaar?
51,2% Laten we dit modelleren met een afnemende exponentiële functie. f (x) = y keer (0.8) ^ x Waarbij y de startwaarde van de auto is en x de tijd is die verstreken is in jaren sinds het jaar van aankoop. Dus na 3 jaar hebben we het volgende: f (3) = y keer (0.8) ^ 3 f (3) = 0.512y Dus de auto heeft slechts 51,2% van zijn oorspronkelijke waarde na 3 jaar.