Antwoord:
Zie het antwoord hieronder …
Uitleg:
# Cos2A = sqrt2 (cosa-sina) #
# => Cos2A (cosa + sina) = sqrt2 (cos ^ sin 2A-2A ^) #
# => cos2A (cosA + sinA) = sqrt2 cdot cos2A #
# => cancel (cos2A) (cosA + sinA) = sqrt2 cdot cancel (cos2A #
# => (COSA + Sina) = sqrt2 #
# => ^ Sin 2A + cos ^ 2A + 2sinAcosA = 2 # vierkant aan beide kanten
# => 1 + sin2A = 2 #
# => Sin2A = 1 = sin90 ^ @ #
# => 2A = 90 ^ @ #
# => A = 45 ^ @ # HOOP HET ANTWOORD HELPT …
DANK JE…
Wanneer
Wat zijn andere methoden voor het oplossen van vergelijkingen die kunnen worden aangepast voor het oplossen van trigonometrische vergelijkingen?

Het oplossen van concept. Om een trig-vergelijking op te lossen, transformeert u deze in één of vele standaard trig-vergelijkingen. Het oplossen van een trig-vergelijking resulteert uiteindelijk in het oplossen van verschillende standaard trig-vergelijkingen. Er zijn 4 belangrijkste basis-trig-vergelijkingen: sin x = a; cos x = a; tan x = a; kinderbedje x = a. Exp. Los sin op 2x - 2sin x = 0 Oplossing. Transformeer de vergelijking in 2 standaard trig-vergelijkingen: 2sin x.cos x - 2sin x = 0 2sin x (cos x - 1) = 0. Los vervolgens de 2 basisvergelijkingen op: sin x = 0 en cos x = 1. Transformatie werkwijze. Er zi
Wat is (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt (3) sqrt (5))?

2/7 We nemen, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5 -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3 ) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (cancel (2sqrt15) -5 + 2 * 3cancel (-sqrt15) - cancel (2sqrt15) -5 + 2 * 3 + cancel (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 Merk op dat, als in de noemers (sqrt3 + sqrt (3 + sqrt5)) en (sqrt
Hoe vereenvoudig je (1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) div sqrt (a + 1) / ( (a-1) sqrt (a + 1) - (a + 1) sqrt (a-1)), a> 1?

Enorme wiskundige opmaak ...> kleur (blauw) (((1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) ) / (sqrt (a + 1) / ((a-1) sqrt (a + 1) - (a + 1) sqrt (a-1))) = kleur (rood) (((1 / sqrt (a- 1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a-1)))) / (sqrt (a +1) / (sqrt (a-1) cdot sqrt (a-1) cdot sqrt (a + 1) -sqrt (a + 1) cdot sqrt (a + 1) sqrt (a-1))) = kleur ( blauw) (((1 / sqrt (a-1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a -1)))) / (sqrt (a + 1) / (sqrt (a + 1) cdot sqrt (a-1) (sqrt (a-1) -sqrt (a + 1))) = kleur (rood) ((1 / sqrt (a-1) +