Antwoord:
De grafiek is een hyperbool, dus er zijn twee symmetrielijnen:
Uitleg:
De grafiek van
Hyperbola's hebben twee symmetrielijnen. beide symmetrielijnen gaan door het midden van de hyperbool. Eén gaat door de hoekpunten (en door de foci) en de andere staat loodrecht op de eerste.
De grafiek van
Voor
Een manier om dit te beschrijven, is dat we de symmetrielijnen vertalen zoals we de hyperbool deden: we vervangen
De twee lijnen zijn daarom
Bonus voorbeeld
Wat zijn de symmetrielijnen van de grafiek van:
Probeer het zelf uit te werken voordat u de onderstaande oplossing leest.
Heb je gekregen:
Als dat zo is, hebt u gelijk.
We kunnen de vergelijking herschrijven om de vertalingen duidelijker te maken:
Het is duidelijk dat begint met
Dat verplaatst het centrum naar
De symmetrielijnen worden ook vertaald:
In plaats van
in plaats van
Zet nu de lijnen in het hellingsintercept om de antwoorden te krijgen die ik heb gegeven.
Trouwens: de asymptoten van
De vergelijking van een lijn is 2x + 3y - 7 = 0, vind: - (1) helling van lijn (2) de vergelijking van een lijn loodrecht op de gegeven lijn en passeert de kruising van de lijn x-y + 2 = 0 en 3x + y-10 = 0?
-3x + 2y-2 = 0 kleur (wit) ("ddd") -> kleur (wit) ("ddd") y = 3 / 2x + 1 Eerste deel in veel detail dat aantoont hoe de eerste beginselen werken. Eenmaal hieraan gebruikt en met behulp van snelkoppelingen, gebruikt u veel minder regels. kleur (blauw) ("Bepaal het snijpunt van de beginvergelijkingen") x-y + 2 = 0 "" ....... Vergelijking (1) 3x + y-10 = 0 "" .... Vergelijking ( 2) Trek x af van beide zijden van Eqn (1) en geef -y + 2 = -x Vermenigvuldig beide zijden met (-1) + y-2 = + x "" .......... Vergelijking (1_a ) Gebruik Eqn (1_a) substituut voor x in Eqn
Wat zijn de variabelen van onderstaande grafiek? Hoe zijn de variabelen in grafiek gerelateerd in verschillende punten van de grafiek?
Volume en tijd De titel "Air in Baloon" is eigenlijk een afgeleide conclusie. De enige variabelen in een 2D-plot zoals die worden getoond, zijn die in de x- en y-assen. Daarom zijn Tijd en Volume de juiste antwoorden.
Schets de grafiek van y = 8 ^ x met de coördinaten van punten waar de grafiek de coördinaatassen kruist. Beschrijf de transformatie die de grafiek Y = 8 ^ x omzet in de grafiek y = 8 ^ (x + 1) volledig?
Zie hieronder. Exponentiële functies zonder verticale transformatie overschrijden nooit de x-as. Als zodanig heeft y = 8 ^ x geen x-intercepts. Het heeft een y-snijpunt op y (0) = 8 ^ 0 = 1. De grafiek moet op het volgende lijken. grafiek {8 ^ x [-10, 10, -5, 5]} De grafiek van y = 8 ^ (x + 1) is de grafiek van y = 8 ^ x 1 eenheid naar links verplaatst, zodat het y- onderscheppen ligt nu op (0, 8). Je ziet ook dat y (-1) = 1. grafiek {8 ^ (x + 1) [-10, 10, -5, 5]} Hopelijk helpt dit!