Antwoord:
De periode is
Uitleg:
De periode
Hier,
daarom
Zoals,
Antwoord:
Uitleg:
Periode van
Periode van
Periode van f (t) -> minste gemene veelvoud van
Periode van f (t) ->
Laat zien dat cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Ik ben een beetje in de war als ik Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10) maak, zal het negatief worden als cos (180 ° -theta) = - costheta in het tweede kwadrant. Hoe kan ik de vraag bewijzen?
Zie onder. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Wat is de periode en de fundamentele periode van y (x) = sin (2x) + cos (4x)?
Y (x) is een som van twee trignometrische functies. De periode van sin 2x zou zijn (2pi) / 2 die pi of 180 graden is. Periode van cos4x zou (2pi) / 4 zijn die pi / 2 of 90 graden is. Zoek de LCM van 180 en 90. Dat zou 180 zijn. Vandaar dat de periode van de gegeven functie pi zou zijn
Wat is de periode van f (t) = sin (t / 2) + cos ((13t) / 24)?
52pi De periode van zowel sin kt als cos kt is (2pi) / k. Dus, afzonderlijk, de perioden van de twee termen in f (t) zijn 4pi en (48/13) pi. Voor de som wordt de samengestelde periode gegeven door L (4pi) = M ((48/13) pi), waardoor de gemeenschappelijke waarde als het kleinste gehele veelvoud van pi wordt gemaakt. L = 13 en M = 1. De gemeenschappelijke waarde = 52pi; Controle: f (t + 52pi) = sin ((1/2) (t + 52pi)) + cos ((24/13) (t + 52pi)) = sin (26pi + t / 2) + cos (96pi + ( 24/13) t) = sin (t / 2) + cos (24 / 13t) = f (t) ..