Antwoord:
Uitleg:
Een gelijkzijdige driehoek heeft
Bron:
De lengte van elke zijde van een gelijkzijdige driehoek wordt verhoogd met 5 inch, dus de omtrek is nu 60 inch. Hoe schrijf en los je een vergelijking op om de originele lengte van elke zijde van de gelijkzijdige driehoek te vinden?
Ik vond: 15 "in" Laten we de oorspronkelijke lengte x noemen: Toename van 5 "in" geeft ons: (x + 5) + (x + 5) + (x + 5) = 60 3 (x + 5) = 60 herschikken: x + 5 = 60/3 x + 5 = 20 x = 20-5 x = 15 "in"
Het langere been van een rechthoekige driehoek is 3 inch meer dan 3 keer de lengte van het kortere been. Het gebied van de driehoek is 84 vierkante inch. Hoe vind je de omtrek van een rechthoekige driehoek?
P = 56 vierkante inch. Zie onderstaande figuur voor een beter begrip. c = 3b + 3 (bc) / 2 = 84 (b. (3b + 3)) / 2 = 84 3b ^ 2 + 3b = 84xx2 3b ^ 2 + 3b-168 = 0 Oplossing van de kwadratische vergelijking: b_1 = 7 b_2 = -8 (onmogelijk) Dus, b = 7 c = 3xx7 + 3 = 24 a ^ 2 = 7 ^ 2 + 24 ^ 2 a ^ 2 = 625 a = sqrt (625) = 25 P = 7 + 24 + 25 = 56 vierkante centimeter
Wat is de omtrek van een 15-inch cirkel als de diameter van een cirkel recht evenredig is met de straal en een cirkel met een diameter van 2 inch heeft een omtrek van ongeveer 6,28 inch?
Ik geloof dat het eerste deel van de vraag verondersteld werd te zeggen dat de omtrek van een cirkel recht evenredig is met de diameter ervan. Die relatie is hoe we pi krijgen. We kennen de diameter en de omtrek van de kleinere cirkel, respectievelijk "2 inch" en "6.28 inch". Om de verhouding tussen de omtrek en de diameter te bepalen, delen we de omtrek door de diameter, "6.28 in" / "2 in" = "3.14", die veel op Pi lijkt. Nu we de proportie kennen, kunnen we de diameter van de grotere cirkel maal de verhouding vermenigvuldigen om de omtrek van de cirkel te berekenen. "