Antwoord:
Ongeveer 2488 dollar
Uitleg:
Als we gaan zitten
1.06 omdat haar geld elke keer vermenigvuldigd wordt met 106%, en tot de macht van 12 omdat rente 3 keer per jaar gedurende 4 jaar wordt samengesteld.
Dus gewoon oplossen
Jake stort elk jaar $ 220 op een rekening op zijn verjaardag. Het account verdient 3,2% eenvoudige rente en de rente wordt aan het einde van elk jaar aan hem verzonden. Hoeveel rente en wat is zijn saldo aan het einde van jaar 2 en 3?
Aan het einde van het 2e jaar is zijn saldo $ 440, I = $ 14.08 Aan het einde van het derde jaar is zijn saldo $ 660, I = $ 21.12 We krijgen niet te horen wat Jake doet met de rente, dus we kunnen niet aannemen dat hij het in stortingen doet zijn account. Als dit zou gebeuren, zou de bank de rente onmiddellijk storten en niet naar hem sturen. Enkelvoudige rente wordt altijd berekend op alleen het oorspronkelijke bedrag in de rekening (de opdrachtgever genoemd). $ 220 wordt aan het begin van elk jaar gestort. Einde van het 1e jaar: SI = (PRT) / 100 = (220xx3.2xx1) / 100 = $ 7,04 Begin van het 2e jaar "" $ 220 + $ 2
Vorig jaar heeft Lisa $ 7000 gestort op een rekening die 11% rente per jaar en $ 1000 betaalde op een rekening die 5% rente per jaar betaalde. Er werden geen opnames gemaakt van de rekeningen. Wat was de totale rente op het einde van 1 jaar?
$ 820 We kennen de formule van simple Interest: I = [PNR] / 100 [Where I = Interest, P = Principal, N = No of years and R = Rate of interest] In het eerste geval is P = $ 7000. N = 1 en R = 11% Dus, Interest (I) = [7000 * 1 * 11] / 100 = 770 Voor tweede geval, P = $ 1000, N = 1 R = 5% Dus, Interest (I) = [1000 * 1 * 5] / 100 = 50 Vandaar de totale rente = $ 770 + $ 50 = $ 820
Een auto daalt met een snelheid van 20% per jaar. Aan het einde van elk jaar is de auto vanaf het begin van het jaar 80% van zijn waarde waard. Welk percentage van de oorspronkelijke waarde is de auto waard aan het einde van het derde jaar?
51,2% Laten we dit modelleren met een afnemende exponentiële functie. f (x) = y keer (0.8) ^ x Waarbij y de startwaarde van de auto is en x de tijd is die verstreken is in jaren sinds het jaar van aankoop. Dus na 3 jaar hebben we het volgende: f (3) = y keer (0.8) ^ 3 f (3) = 0.512y Dus de auto heeft slechts 51,2% van zijn oorspronkelijke waarde na 3 jaar.