Wat is de vergelijking van de raaklijn van f (x) = cosx-e ^ xsinx bij x = pi / 3?

Wat is de vergelijking van de raaklijn van f (x) = cosx-e ^ xsinx bij x = pi / 3?
Anonim

Antwoord:

Vergelijking van de raaklijn

# y-1/2 + sqrt (3) / 2 * e ^ (pi / 3) = - 1/2 (sqrt (3) + e ^ (pi / 3) + sqrt (3) e ^ (pi / 3)) (x-pi / 3) #

Uitleg:

We vertrekken van de gegeven vergelijking #f (x) = cos x-e ^ x sin x #

Laten we eerst het raakpunt oplossen

#f (pi / 3) = cos (pi / 3) -e ^ (pi / 3) sin (pi / 3) #

#f (pi / 3) = 1/2-e ^ (pi / 3) sqrt (3) / 2 #

Laten we de helling oplossen # M # nu

#f (x) = cos x-e ^ x sin x #

Zoek eerst de eerste afgeleide

#f '(x) = d / dx (cos x-e ^ x sin x) #

#f '(x) = - sin x- e ^ x * cos x + sin x * e ^ x * 1 #

Helling # m = f '(pi / 3) = - sin (pi / 3) - e ^ (pi / 3) cos (pi / 3) + sin (pi / 3) * e ^ (pi / 3) #

# m = f '(pi / 3) = - sqrt (3) / 2- e ^ (pi / 3) * 1/2 + sqrt (3) / 2 * e ^ (pi / 3) #

# m = f '(pi / 3) = - sqrt (3) / 2- 1/2 + sqrt (3) / 2 * e ^ (pi / 3) #

# m = f '(pi / 3) = - 1/2 sqrt (3) + e ^ (pi / 3) + sqrt (3) e ^ (pi / 3) * #

Onze raaklijn:

# Y-f (pi / 3) = m (x-pi / 3) #

# y-1/2 + sqrt (3) / 2 * e ^ (pi / 3) = - 1/2 (sqrt (3) + e ^ (pi / 3) + sqrt (3) e ^ (pi / 3)) (x-pi / 3) #

Zie alstublieft de grafiek van #f (x) = cos x-e ^ x sin x # en de raaklijn

# y-1/2 + sqrt (3) / 2 * e ^ (pi / 3) = - 1/2 (sqrt (3) + e ^ (pi / 3) + sqrt (3) e ^ (pi / 3)) (x-pi / 3) #

God zegene … Ik hoop dat de uitleg nuttig is.