Antwoord:
Uitleg:
# "de vergelijking van een lijn in" kleur (blauw) "punthellingsvorm" # is.
# • y-y_1 = m (x-x_1) #
# "waarbij m staat voor de helling en" (x_1, y_1) #
# "een punt op de lijn" #
# "hier" m = 4 "en" (x_1, y_1) = (- 1,2) #
# y-2 = 4 (x + 1) larrcolor (rood) "in punt-hellingsvorm" #
# "distribueren en vereenvoudigen geeft een alternatieve versie" #
# Y2 = 4x + 4 #
# rArry = 4x + 6larrcolor (rood) "in hellingsintercept" #
De vergelijking van een lijn is 2x + 3y - 7 = 0, vind: - (1) helling van lijn (2) de vergelijking van een lijn loodrecht op de gegeven lijn en passeert de kruising van de lijn x-y + 2 = 0 en 3x + y-10 = 0?
-3x + 2y-2 = 0 kleur (wit) ("ddd") -> kleur (wit) ("ddd") y = 3 / 2x + 1 Eerste deel in veel detail dat aantoont hoe de eerste beginselen werken. Eenmaal hieraan gebruikt en met behulp van snelkoppelingen, gebruikt u veel minder regels. kleur (blauw) ("Bepaal het snijpunt van de beginvergelijkingen") x-y + 2 = 0 "" ....... Vergelijking (1) 3x + y-10 = 0 "" .... Vergelijking ( 2) Trek x af van beide zijden van Eqn (1) en geef -y + 2 = -x Vermenigvuldig beide zijden met (-1) + y-2 = + x "" .......... Vergelijking (1_a ) Gebruik Eqn (1_a) substituut voor x in Eqn
De vergelijking van regel QR is y = - 1/2 x + 1. Hoe schrijf je een vergelijking van een lijn loodrecht op lijn QR in hellingsintercept vorm die punt (5, 6) bevat?
Zie een oplossingsproces hieronder: Eerst moeten we de helling van de voor de twee punten in het probleem vinden. De lijn QR bevindt zich in de vorm van een helling. De hellingsinterceptievorm van een lineaire vergelijking is: y = kleur (rood) (m) x + kleur (blauw) (b) Waar kleur (rood) (m) de helling is en kleur (blauw) (b) de y-waarde onderscheppen. y = kleur (rood) (- 1/2) x + kleur (blauw) (1) Daarom is de helling van QR: kleur (rood) (m = -1/2) Laten we vervolgens de helling voor de lijnloodlijn noemen naar deze m_p De regel van loodrechte hellingen is: m_p = -1 / m Vervangen van de berekende helling geeft: m_p = (-1)
Wat is de vergelijking van een lijn die door het punt gaat (10, 5) en staat loodrecht op de lijn waarvan de vergelijking y = 54x-2 is?
Vergelijking van de lijn met helling -1/54 en passeren door (10,5) is kleur (groen) (x + 54y = 280 y = 54x - 2 Helling m = 54 Helling van de loodlijn m_1 = 1 / -m = -1 / 54 Vergelijking van de lijn met helling -1/54 en doorgaand (10,5) is y - 5 = - (1/54) * (x - 10) 54y - 270 = -x + 10 x + 54y = 280