Antwoord:
Uitleg:
Vierkanten worden erg snel heel groot, dus je wilt geen grotere cijfers gebruiken. Het grootste aantal van de vierkanten komt uit
gebruik makend van
Hoe groter het verschil tussen de twee getallen, hoe groter een van de getallen zal zijn.
Gebruik daarom twee getallen met het kleinste verschil tussen hen dat zal zijn
Het product van twee opeenvolgende oneven gehele getallen is 29 minder dan 8 keer hun som. Zoek de twee gehele getallen. Antwoord eerst in de vorm van gepaarde punten met de laagste van de twee gehele getallen?
(13, 15) of (1, 3) Laat x en x + 2 de oneven opeenvolgende getallen zijn, dan hebben we vanaf de vraag (x) (x + 2) = 8 (x + x + 2) - 29 :. x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 of 1 Nu, CASE I: x = 13:. x + 2 = 13 + 2 = 15:. De cijfers zijn (13, 15). CASE II: x = 1:. x + 2 = 1+ 2 = 3:. De cijfers zijn (1, 3). Vandaar dat er hier twee gevallen worden gevormd; het paar getallen kan zowel (13, 15) als (1, 3) zijn.
De som van de vierkanten van twee natuurlijke getallen is 58. Het verschil tussen hun vierkanten is 40. Wat zijn de twee natuurlijke getallen?
De getallen zijn 7 en 3. We laten de getallen x en y zijn. {(x ^ 2 + y ^ 2 = 58), (x ^ 2 - y ^ 2 = 40):} We kunnen dit gemakkelijk oplossen met behulp van eliminatie, waarbij we opmerken dat de eerste y ^ 2 positief is en de tweede negatief. We blijven over: 2x ^ 2 = 98 x ^ 2 = 49 x = + -7 Omdat echter wordt vermeld dat de getallen natuurlijk zijn, dat wil zeggen groter dan 0, x = + 7. Nu, oplossen voor y, we krijgen: 7 ^ 2 + y ^ 2 = 58 y ^ 2 = 9 y = 3 Hopelijk helpt dit!
De som van twee getallen is 20. Zoek de minimaal mogelijke som van hun vierkanten?
10 + 10 = 20 10 ^ 2 + 10 ^ 2 = 200. a + b = 20 a ^ 2 + b ^ 2 = x Voor a en b: 1 ^ 2 + 19 ^ 2 = 362 2 ^ 2 + 18 ^ 2 = 328 3 ^ 2 + 17 ^ 2 = 298 Hieruit kun je kan zien dat de dichtstbijzijnde waarden van a en b een kleinere som hebben. Dus voor a = b, 10 + 10 = 20 en 10 ^ 2 + 10 ^ 2 = 200.