Antwoord:
Uitleg:
Op de evenaar draait een punt in een cirkel met een straal
De hoeksnelheid van rotatie is
Dus de centripetale versnelling is
Wat zou de rotatieperiode van de aarde moeten zijn voor objecten op de evenaar om een centripetale versnelling te hebben met een magnitude van 9,80 ms ^ -2?
Fascinerende vraag! Zie de onderstaande berekening, die laat zien dat de rotatieperiode 1,41 uur zou zijn. Om deze vraag te beantwoorden, moeten we de diameter van de aarde weten. Van geheugen is het ongeveer 6,4xx10 ^ 6 m. Ik heb het opgezocht en het is gemiddeld 6371 km, dus als we het ronddraaien naar twee significante cijfers, is mijn geheugen goed. De centripetale versnelling wordt gegeven door a = v ^ 2 / r voor lineaire snelheid, of a = omega ^ 2r voor rotatiesnelheid. Laten we de laatste voor het gemak gebruiken. Vergeet niet dat we de versnelling kennen die we willen en de straal, en dat we de rotatieperiode moete
Een object met een massa van 7 kg draait rond een punt op een afstand van 8 m. Als het voorwerp omwentelingen maakt met een frequentie van 4 Hz, wat is dan de centripetale kracht die op het voorwerp inwerkt?
Gegevens: - Massa = m = 7kg Afstand = r = 8m Frequentie = f = 4Hz Centripetaalkracht = F = ?? Sol: - We weten dat: de centripetale versnelling a wordt gegeven door F = (mv ^ 2) / r ................ (i) Waarbij F de centripetale kracht is, m is de massa, v is de tangentiële of lineaire snelheid en r is de afstand vanaf het midden. We weten ook dat v = romega Waar omega de hoeksnelheid is. Zet v = romega in (i) impliceert F = (m (romega) ^ 2) / r impliceert F = mromega ^ 2 ........... (ii) De relatie tussen hoeksnelheid en frequentie is omega = 2pif Put omega = 2pif in (ii) impliceert F = mr (2pif) ^ 2 impliceert F = 4p
Een voorwerp met een massa van 6 kg draait rond een punt op een afstand van 8 m. Als het voorwerp omwentelingen maakt met een frequentie van 6 Hz, wat is dan de centripetale kracht die op het object inwerkt?
De kracht die op het object inwerkt is 6912pi ^ 2 Newton. We beginnen met het bepalen van de snelheid van het object. Omdat het draait in een cirkel met een straal van 8m 6 keer per seconde, weten we dat: v = 2pir * 6 Het inpluggen van waarden geeft ons: v = 96 pi m / s Nu kunnen we de standaardvergelijking voor centripetale versnelling gebruiken: a = v ^ 2 / ra = (96pi) ^ 2/8 a = 1152pi ^ 2 m / s ^ 2 En om het probleem te beëindigen, gebruiken we gewoon de gegeven massa om de kracht te bepalen die nodig is om deze versnelling te produceren: F = ma F = 6 * 1152pi ^ 2 F = 6912pi ^ 2 Newtons