Antwoord:
De vergelijking van de lijn die passeert
Uitleg:
Parallelle lijnen hebben gelijke hellingen.
De helling van de lijn
Dus de helling van de lijn passeert
De vergelijking van de lijn die passeert
Antwoord:
Uitleg:
Het eerste dat opvalt, is dat punt
is een specifiek punt op de lijn.
De
In feite is dat zo
Parallelle lijnen hebben dezelfde helling.
De vergelijking van een regel kan in de vorm worden geschreven
We hebben zowel m als c, vervang ze in de vergelijking.
De vergelijking van regel-CD is y = -2x - 2. Hoe schrijf je een vergelijking van een regel evenwijdig aan lijn-CD in het hellingsintercept met punt (4, 5)?
Y = -2x + 13 Zie uitleg dit is een lange antwoordvraag.CD: "" y = -2x-2 Parallel betekent dat de nieuwe lijn (we noemen dit AB) dezelfde helling zal hebben als CD. "" m = -2:. y = -2x + b Sluit nu het opgegeven punt aan. (x, y) 5 = -2 (4) + b Oplossen voor b. 5 = -8 + b 13 = b Dus de vergelijking voor AB is y = -2x + 13 Controleer nu y = -2 (4) +13 y = 5 Daarom (4,5) staat op de lijn y = -2x + 13
Er loopt een lijn door (8, 1) en (6, 4). Een tweede regel passeert (3, 5). Wat is een ander punt dat de tweede regel kan passeren als deze parallel is aan de eerste regel?
(1,7) Dus moeten we eerst de richtingsvector vinden tussen (8,1) en (6,4) (6,4) - (8,1) = (- 2,3) We weten dat een vectorvergelijking bestaat uit een positievector en een richtingsvector. We weten dat (3,5) een positie is op de vectorvergelijking, zodat we die kunnen gebruiken als onze positievector en we weten dat deze parallel is aan de andere lijn, zodat we die richtingsvector (x, y) = (3, 4) + s (-2,3) Om een ander punt op de lijn te vinden, vervangt u gewoon elk getal in s behalve 0 (x, y) = (3,4) +1 (-2,3) = (1,7 ) Dus (1,7) is nog een ander punt.
Er loopt een lijn door (4, 3) en (2, 5). Een tweede regel passeert (5, 6). Wat is een ander punt dat de tweede regel kan passeren als deze parallel is aan de eerste regel?
(3,8) Dus moeten we eerst de richtingsvector vinden tussen (2,5) en (4,3) (2,5) - (4,3) = (- 2,2) We weten dat een vectorvergelijking bestaat uit een positievector en een richtingsvector. We weten dat (5,6) een positie op de vectorvergelijking is, zodat we die als onze positievector kunnen gebruiken en we weten dat deze parallel is aan de andere lijn, zodat we die richtingsvector (x, y) = (5, 6) + s (-2,2) Om een ander punt op de lijn te vinden, vervang je gewoon elk getal in s behalve 0, dus kies 1 (x, y) = (5,6) +1 (-2,2) = (3,8) Dus (3,8) is nog een ander punt.