De vierde macht van het gemeenschappelijke verschil van een rekenkundige voortgang is dat integer ingevoerde gegevens worden toegevoegd aan het product van elke vier opeenvolgende termen ervan. Bewijzen dat de resulterende som het kwadraat is van een geheel getal?
Laat het gemeenschappelijke verschil van een AP van gehele getallen 2d zijn. Elke vier opeenvolgende termen van de voortgang kan worden weergegeven als a-3d, a-d, a + d en a + 3d, waarbij a een geheel getal is. Dus de som van de producten van deze vier termen en de vierde macht van het gemeenschappelijke verschil (2d) ^ 4 is = kleur (blauw) ((a-3d) (ad) (a + d) (a + 3d)) + kleur (rood) ((2d) ^ 4) = kleur (blauw) ((^ 2-9d ^ 2) (a ^ 2-d ^ 2)) + kleur (rood) (16d ^ 4) = kleur (blauw ) ((a ^ 4-10d ^ 2a ^ 2 + 9d ^ 4) + kleur (rood) (16d ^ 4) = kleur (groen) ((^ 4-10d ^ 2a ^ 2 + 25d ^ 4) = kleur (groen) ((a ^ 2-5d ^ 2) ^ 2, wat
We hebben a, b, c, dinRR zodanig dat ab = 2 (c + d). Hoe te bewijzen dat ten minste een van de vergelijkingen x ^ 2 + ax + c = 0; x ^ 2 + bx + d = 0 hebben dubbele wortels?
De bewering is onjuist. Beschouw de twee kwadratische vergelijkingen: x ^ 2 + ax + c = x ^ 2-5x + 6 = (x-2) (x-3) = 0 en x ^ 2 + bx + d = x ^ 2-2x-1 = (x-1-sqrt (2)) (x-1 + sqrt (2)) = 0 Dan: ab = (-5) (- 2) = 10 = 2 (6-1) = 2 (c + d ) Beide vergelijkingen hebben verschillende echte wortels en: ab = 2 (c + d) Dus de bewering is onjuist.
Stel dat een persoon willekeurig een kaart uit een pak van 52 kaarten selecteert en ons vertelt dat de geselecteerde kaart rood is. Vind je de kans dat de kaart het soort hart is dat wordt gegeven dat hij rood is?
1/2 P ["kleur is harten"] = 1/4 P ["kaart is rood"] = 1/2 P ["kleur is harten | kaart is rood"] = (P ["kleur is harten EN kaart is rood "]) / (P [" kaart is rood "]) = (P [" kaart is rood | pak is harten "] * P [" kleur is harten "]) / (P [" kaart is rood "]) = (1 * P ["kleur is harten"]) / (P ["kaart is rood"]) = (1/4) / (1/2) = 2/4 = 1/2