Antwoord:
Het Heisenberg-onzekerheidsbeginsel maakt deel uit van de basis van de kwantummechanica. Het is de stelling dat het niet mogelijk is om zowel de locatie als de vectoren van een elektron te kennen.
Uitleg:
Het Heisenberg-onzekerheidsbeginsel stelt dat als een inspanning wordt gedaan om de locatie van een elektron te lokaliseren, de energie die wordt gebruikt om de locatie van het elektron te lokaliseren, de snelheid en de richting van de beweging van het elektron verandert.
Dus wat onzeker is, is dat zowel de locatie als de vectoren van een elektron niet tegelijkertijd op hetzelfde moment bekend kunnen zijn.
Het product van drie gehele getallen is 56. Het tweede getal is het dubbele van het eerste getal. Het derde cijfer is vijf meer dan het eerste nummer. Wat zijn de drie nummers?
X = 1.4709 1-ste nummer: x 2-punts nummer: 2x 3-punts nummer: x + 5 Oplossen: x 2 x (x + 5) = x * (2x ^ 2 + 10x) = 56 2x ^ 3 + 10x ^ 2 = 56 2x ^ 2 (x + 5) = 56 x ^ 2 (x + 5) = 28 x ongeveer gelijk aan 1.4709 dan vind je je 2-en 3-ste nummers. Ik zou je aanraden om de vraag dubbel te controleren
Het product van drie gehele getallen is 90. Het tweede getal is het dubbele van het eerste getal. Het derde nummer twee meer dan het eerste nummer. Wat zijn de drie nummers?
22,44,24 We nemen aan dat het eerste getal x is. Eerste cijfer = x "tweemaal het eerste cijfer" Tweede cijfer = 2 * "eerste cijfer" Tweede cijfer = 2 * x "twee meer dan het eerste cijfer" Tweede cijfer = "eerste cijfer" +2 Derde nummer = x + 2 Het product van drie gehele getallen is 90. "eerste getal" + "tweede getal" + "derde getal" = 90 (x) + (2x) + (x + 2) = 90 Nu lossen we op voor x 4x + 2 = 90 4x = 88 x = 22 Nu we weten wat x is, kunnen we het aansluiten om elk individueel getal te vinden wanneer x = 22 Eerste = x = 22 Tweede = 2x = 2 * 22 = 44 Derd
Wat is de grootte van de versnelling van het blok wanneer het op het punt x = 0,24 m, y = 0,52 m is? Wat is de richting van de versnelling van het blok wanneer het op het punt x = 0,24 m, y = 0,52 m is? (Zie de details).
Omdat x en y orthogonaal ten opzichte van elkaar zijn, kunnen deze onafhankelijk worden behandeld. We weten ook dat vecF = -gradU: .x-component van tweedimensionale kracht F_x = - (delU) / (delx) F_x = -del / (delx) [(5.90 Jm ^ -2) x ^ 2- ( 3,65 Jm ^ -3) y ^ 3] F_x = -11.80x x-component van versnelling F_x = ma_x = -11.80x 0.0400a_x = -11.80x => a_x = -11.80 / 0.0400x => a_x = -295x At het gewenste punt a_x = -295xx0.24 a_x = -70.8 ms ^ -2 Evenzo is de y-component van kracht F_y = -del / (dely) [(5.90 Jm ^ -2) x ^ 2- (3.65 Jm ^ -3) y ^ 3] F_y = 10.95y ^ 2 y-component van versnelling F_y = ma_ = 10.95y ^ 2 0.0400a_y =