Antwoord:
Uitleg:
U moet de formule kennen voor het berekenen van het gebied van een cirkel:
Dus als u weet dat de diameter 5 ft is, kunt u de straal berekenen. De straal van de meting in een cirkel van het midden naar een buitenrand: dit betekent dat
Dus daarom,
Nu kunnen we het gebied berekenen met behulp van de formule.
Je zou dit echter wel kunnen afronden
Echt resultaat =
De diameter voor de kleinere halve cirkel is 2r, vind je de uitdrukking voor het gearceerde gebied? Laat de diameter van de grotere halve cirkel 5 het oppervlak van het gearceerde gebied berekenen?
Kleur (blauw) ("Gebied met gearceerd gebied met een kleinere halve cirkel" = ((8r ^ 2-75) pi) / 8 kleur (blauw) ("Gebied met gearceerd gebied met grotere halve cirkel" = 25/8 "eenheden" ^ 2 "Gebied van" Delta OAC = 1/2 (5/2) (5/2) = 25/8 "Area of Quadrant" OAEC = (5) ^ 2 (pi / 2) = (25pi) / 2 "Area of segment "AEC = (25pi) / 2-25 / 8 = (75pi) / 8" Ruimte van Halve Cirkel "ABC = r ^ 2pi Oppervlakte van gearceerd gebied met een kleinere halve cirkel is:" Gebied "= r ^ 2pi- (75pi) / 8 = ((8r ^ 2-75) pi) / 8 Gebied met gearceerd gebied met grotere
Wat is de omtrek van een 15-inch cirkel als de diameter van een cirkel recht evenredig is met de straal en een cirkel met een diameter van 2 inch heeft een omtrek van ongeveer 6,28 inch?
Ik geloof dat het eerste deel van de vraag verondersteld werd te zeggen dat de omtrek van een cirkel recht evenredig is met de diameter ervan. Die relatie is hoe we pi krijgen. We kennen de diameter en de omtrek van de kleinere cirkel, respectievelijk "2 inch" en "6.28 inch". Om de verhouding tussen de omtrek en de diameter te bepalen, delen we de omtrek door de diameter, "6.28 in" / "2 in" = "3.14", die veel op Pi lijkt. Nu we de proportie kennen, kunnen we de diameter van de grotere cirkel maal de verhouding vermenigvuldigen om de omtrek van de cirkel te berekenen. "
Je krijgt een cirkel B met een middelpunt (4, 3) en een punt op (10, 3) en een andere cirkel C waarvan het middelpunt (-3, -5) is en een punt op die cirkel is (1, -5) . Wat is de verhouding van cirkel B tot cirkel C?
3: 2 "of" 3/2 "we moeten de stralen van de cirkels berekenen en vergelijken" "de straal is de afstand van het centrum tot het punt" "op de cirkel" "centrum van B" = (4,3 ) "en punt is" = (10,3) "omdat de y-coördinaten beide 3 zijn, dan is de straal" "het verschil in de x-coördinaten" rArr "straal van B" = 10-4 = 6 "midden van C "= (- 3, -5)" en punt is "= (1, -5)" y-coördinaten zijn beide - 5 "rArr" radius van C "= 1 - (- 3) = 4" ratio " = (kleur (rood) "radius_B&qu