De vertexvorm van een parabool is
De top van de parabool is
Voor deze parabool, de focus
De richtlijn
We hebben nu twee vergelijkingen en kunnen de waarden vinden van
Het oplossen van dit systeem geeft
De waarden van
Wat is de vertexvorm van de vergelijking van de parabool met een focus op (11,28) en een richtlijn van y = 21?
De vergelijking van parabool in vertex-vorm is y = 1/14 (x-11) ^ 2 + 24,5 De Vertex is equuidistant van focus (11,28) en directrix (y = 21). Dus vertex is op 11, (21 + 7/2) = (11,24.5) De vergelijking van parabool in vertex-vorm is y = a (x-11) ^ 2 + 24,5. De afstand van vertex van de richtlijn is d = 24.5-21 = 3.5 We weten d = 1 / (4 | a |) of a = 1 / (4 * 3.5) = 1 / 14.Sinds Parabola opent, 'a' is + ive. Vandaar dat de vergelijking van parabool in vertex-vorm is y = 1/14 (x-11) ^ 2 + 24.5 grafiek {1/14 (x-11) ^ 2 + 24.5 [-160, 160, -80, 80]} [ ans]
Wat is de vertexvorm van de vergelijking van de parabool met een focus op (1,20) en een richtlijn van y = 23?
Y = x ^ 2 / -6 + x / 3 + 64/3 Given - Focus (1,20) directrix y = 23 De vertex van de parabool bevindt zich in het eerste kwadrant. De richtlijn is boven de top. Vandaar dat de parabool naar beneden opent. De algemene vorm van de vergelijking is - (xh) ^ 2 = - 4xxaxx (yk) Waar - h = 1 [X-coördinaat van de vertex] k = 21,5 [Y-coördinaat van de vertex] Dan - (x-1 ) ^ 2 = -4xx1.5xx (y-21.5) x ^ 2-2x + 1 = -6y + 129 -6y + 129 = x ^ 2-2x + 1 -6y = x ^ 2-2x + 1-129 y = x ^ 2 / -6 + x / 3 + 128/6 y = x ^ 2 / -6 + x / 3 + 64/3
Wat is de vertexvorm van de vergelijking van de parabool met een focus op (12,22) en een richtlijn van y = 11?
Y = 1/22 (x-12) ^ 2 + 33/2> "de vergelijking van een parabool in" kleur (blauw) "vertex-vorm" is. kleur (rood) (balk (ul (| kleur (wit) (2/2) kleur (zwart) (y = a (xh) ^ 2 + k) kleur (wit) (2/2) |))) "waar "(h, k)" zijn de coördinaten van de vertex en een "" is een vermenigvuldiger "" voor elk punt "(xy)" op een parabool "" de focus en de richting zijn equidistant van "(x, y)" met behulp van de "color (blue)" afstandsformule "" on "(x, y)" en "(12,22) rArrsqrt ((x-12) ^ 2 + (y-22) ^ 2) = | y-11 |