Antwoord:
oplossing ingesteld
Uitleg:
1. Deel 3 van beide kanten.
# 3x ^ 2 = 48 #
# 3x ^ 2color (rood) (-: 3) = 48color (rood) (-: 3) #
# X ^ 2 = 16 #
2. Simplify.
#X = + - 4 #
Let daar op
Bijvoorbeeld:
#(-4)^2=16#
#16=16#
Tomas schreef de vergelijking y = 3x + 3/4. Toen Sandra haar vergelijking schreef, ontdekten ze dat haar vergelijking dezelfde oplossingen had als de vergelijking van Tomas. Welke vergelijking kan van Sandra zijn?
4y = 12x +3 12x-4y +3 = 0 Een vergelijking kan in vele vormen worden gegeven en toch hetzelfde betekenen. y = 3x + 3/4 "" (bekend als de helling / intercept-vorm.) Vermenigvuldigd met 4 om de breuk te verwijderen geeft: 4y = 12x +3 "" rarr 12x-4y = -3 "" (standaardformulier) 12x- 4y +3 = 0 "" (algemene vorm) Dit zijn allemaal in de eenvoudigste vorm, maar we zouden er ook oneindig veel variaties van kunnen hebben. 4y = 12x + 3 kan worden geschreven als: 8y = 24x +6 "" 12y = 36x +9, "" 20y = 60x +15 enz
Wat is de vergelijking van de locus van punten op een afstand van sqrt (20) eenheden van (0,1)? Wat zijn de coördinaten van de punten op de lijn y = 1 / 2x + 1 op een afstand van sqrt (20) van (0, 1)?
Vergelijking: x ^ 2 + (y-1) ^ 2 = 20 Coördinaten van gespecificeerde punten: (4,3) en (-4, -1) Deel 1 De locus van punten op een afstand van sqrt (20) van (0 , 1) is de omtrek van een cirkel met radius sqrt (20) en midden op (x_c, y_c) = (0,1) De algemene vorm voor een cirkel met radiuskleur (groen) (r) en midden (kleur (rood) ) (x_c), kleur (blauw) (y_c)) is kleur (wit) ("XXX") (x-kleur (rood) (x_c)) ^ 2+ (y-kleur (blauw) (y_c)) ^ 2 = kleur (groen) (r) ^ 2 In dit geval kleur (wit) ("XXX") x ^ 2 + (y-1) ^ 2 = 20 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Welke uitspraak beschrijft het best de vergelijking (x + 5) 2 + 4 (x + 5) + 12 = 0? De vergelijking is kwadratisch van vorm, omdat deze kan worden herschreven als een kwadratische vergelijking met u-substitutie u = (x + 5). De vergelijking is kwadratisch van vorm, want wanneer deze is uitgevouwen,
Zoals hieronder uitgelegd zal u-vervanging het als kwadratisch in u beschrijven. Voor kwadratisch in x heeft de uitbreiding het hoogste vermogen van x als 2, en wordt dit het beste beschreven als kwadratisch in x.