Antwoord:
Uitleg:
Als Calculator is toegestaan, gebruik dan direct de invoerwaarde en je krijgt zoiets
Als u het echter doet door middel van 'long division', raad ik u aan om dit aantal eerst te vermenigvuldigen met 100 in sqrt en later 10 te verdelen van het resultaat.
Dit is wat ik wil zeggen
Longdeling gebruiken
Verdelen door 10 en we krijgen
Wat is [5 (vierkantswortel van 5) + 3 (vierkantswortel van 7)] / [4 (vierkantswortel van 7) - 3 (vierkantswortel van 5)]?
(159 + 29sqrt (35)) / 47 kleur (wit) ("XXXXXXXX") aangenomen dat ik geen rekenfouten heb gemaakt (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5)) Rationaliseer de noemer door te vermenigvuldigen met het geconjugeerde: = (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5))) xx (4 (sqrt (7)) + 3 (sqrt (5))) / (4 (sqrt (7)) + 3 (sqrt (5))) = (20sqrt (35) + 15 ((sqrt (5)) ^ 2) 12 ((sqrt (7)) ^ 2) + 9sqrt (35)) / (16 ((sqrt (7)) ^ 2) -9 ((sqrt (5) ) ^ 2)) = (29sqrt (35) +15 (5) +12 (7)) / (16 (7) -9 (5)) = (29sqrt (35) + 75 + 84) / (112-45 ) = (159 + 29sqrt (35)) / 47
Wat is de vereenvoudigde vorm van vierkantswortel van 10 - vierkantswortel van 5 over vierkantswortel van 10 + vierkantswortel van 5?
(sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5) = 3-2sqrt (2) (sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5 ) kleur (wit) ("XXX") = annuleren (sqrt (5)) / annuleren (sqrt (5)) * (sqrt (2) -1) / (sqrt (2) +1) kleur (wit) (" XXX ") = (sqrt (2) -1) / (sqrt (2) +1) * (sqrt (2) -1) / (sqrt (2) -1) kleur (wit) (" XXX ") = ( sqrt (2) -1) ^ 2 / ((sqrt (2) ^ 2-1 ^ 2) kleur (wit) ("XXX") = (2-2sqrt2 + 1) / (2-1) kleur (wit) ( "XXX") = 3-2sqrt (2)
Wat is de vierkantswortel van 7 + vierkantswortel van 7 ^ 2 + vierkantswortel van 7 ^ 3 + vierkantswortel van 7 ^ 4 + vierkantswortel van 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Het eerste wat we kunnen doen is de wortels annuleren met de wortels met de even krachten. Omdat: sqrt (x ^ 2) = x en sqrt (x ^ 4) = x ^ 2 voor elk getal, kunnen we alleen maar zeggen dat sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Nu kan 7 ^ 3 herschreven worden als 7 ^ 2 * 7, en die 7 ^ 2 kan uit de wortel komen! Hetzelfde is van toepassing op 7 ^ 5 maar het is herschreven als 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7